• 제목/요약/키워드: phenol removal

검색결과 142건 처리시간 0.021초

순환식 유전체 장벽 플라즈마 반응기를 이용한 수중 페놀 처리 (Degradation of Phenol in Water Using Circulation Dielectric Barrier Plasma Reactors)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제38권3호
    • /
    • pp.251-260
    • /
    • 2012
  • Objectives: The purpose of this study was evaluating the applicability of the circulation dielectric barrier plasma process (DBD) for efficiently treating non-biodegradable wastewater, such as phenol. Methods: The DBD plasma reactor system in this study consisted of a plasma reactor (discharge, ground electrode and quartz dielectric tube, external tube), high voltage source, air supply and reservoir. Effects of the operating parameters on the degradation of phenol and $UV_{254}$ absorbance such as first voltage (60-180 V), oxygen supply rate (0.5-3 l/min), liquid circulation rate (1.5-7 l/min), pH (3.02-11.06) and initial phenol concentration (12.5-100 mg/l) were investigated. Results: Experimental results showed that optimum first voltage, oxygen supply rate, and liquid circulation rate on phenol degradation were 160 V, 1 l/min, and 4.5 l/min, respectively. The removal efficiency of phenol increased with the increase in the initial pH of the phenol solution. To obtain a removal efficiency of phenol and COD of phenol of over 97% (initial phenol concentration, 50.0 mg/l), 15 min and 180 minutes was needed, respectively. Conclusions: It was considered that the absorbance of $UV_{254}$ for phenol degradation can be used as an indirect indicator of change in non-biodegradable organic compounds. Mineralization of the phenol solution may take a relatively longer time than that required for phenol degradation.

나노영가철/활성탄 입자전극과 과황산을 이용한 3차원 전기화학적 산화공정 (Three-dimensional Electrochemical Oxidation process using Nanosized Zero-valent Iron/Activated carbon as Particle electrode and Persulfate)

  • 민동준;김철용;안준영;조수빈;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권6호
    • /
    • pp.104-113
    • /
    • 2018
  • A three-dimensional electrochemical process using nanosized zero-valent iron (NZVI)/activated carbon (AC) particle electrode and persulfate (PS) was developed for oxidizing pollutants. X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were performed to characterize particle electrode. XRD and SEM-EDS analysis confirmed that NZVI was impregnated on the surface of AC. Compared with the conventional two-dimensional electrochemical process, the three-dimensional particle electrode process achieved three times higher efficiency in phenol removal. The system with current density of $5mA/cm^2$ exhibited the highest phenol removal efficiency among the systems employing 1, 5, and $10mA/cm^2$. The removal efficiency of phenol increased as the Fe contents in the particle electrode increased. The particle electrode achieved more than 70% of phenol removal until it was reused for three times. The sulfate radical played a predominant role in phenol removal according to the radical scavenging test.

기존 정수처리방법으로 제거가 어려운 유기물에 대한 실험적 연구 (Retrospect on Refractories in Water Treatment)

  • 우달식;남상호
    • 한국환경보건학회지
    • /
    • 제21권4호
    • /
    • pp.17-23
    • /
    • 1995
  • As a basic experiment to develope biological pretreatment proces~ in water treatment, the experiments on biodegradability and isothermal adsorption of activated carbon were performed on refractories such as humic acid, $NH_3-N$, phenol and ABS which caused the problems in drinking water treatment. Also, the treatabilities on humic acid were examined in the continuous flow type reactors. The removal efficiencies of humic acid, $NH_3-N$, phenol and ABS in the biodegradable experiments for 5 days were 20.1%, 73.4%, 91.7% and 97.5%, respectively. In the isothermal adsorption test of refractories on activated carbon to be used as a media in the continuous flow type reactors, ABS and phenol are adsorbed easily, but humic acid and $NH_3-N$ are difficult to be done. The removal efficiencies of humic acid in granular activated carbon(GAC) reactor were about 7-8% higher than in biological activated carbon(BAC) reactor. The removal efficiencies of humic acid in biological fluidized bed(BFB) reactor were about 30% in GAC media, but were almost zero in sea sand media.

  • PDF

Application of Nanosized Zero-valent Iron-Activated Persulfate for Treating Groundwater Contaminated with Phenol

  • Thao, Trinh Thi;Kim, Cheolyong;Hwang, Inseong
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권1호
    • /
    • pp.41-48
    • /
    • 2017
  • Persulfate (PS) activated with nanosized zero-valent iron (NZVI) was tested as a reagent to remove phenol from groundwater. Batch degradation experiments indicated that NZVI/PS molar ratios between 1 : 2 and 1 : 5 were appropriate for complete removal of phenol, and that the time required for complete removal varied with different PS and NZVI dosages. Chloride ions up to 100 mM enhanced the phenol oxidation rate, and nitrate of any concentration up to 100 mM did not significantly affect the oxidation rate. NZVI showed greater performance than ferrous iron did as an activator for PS. A by-product was formed along with phenol degradation but subsequently was completely degraded, which showed the potential to attain mineralization with the NZVI/PS system. Tests with radical quenchers indicated that sulfate radicals were a predominant radical. The results of this study suggest that NZVI is a promising activator of PS for treating contaminated groundwater.

단일개체군 생물막 반응기를 이용한 페놀폐수의 효율적 처리

  • 박근태;이준훈;이희정;최정순;손홍주;이상준
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.520-523
    • /
    • 2000
  • Phenol and other phenolic compounds are common constituents of aqueous effluents from processes such as polymeric resin production, oil refining and cokeing plants. Phenol is a both toxic and lethal of fish at relatively low concentrations e.g. 5-25 mg/L and imparts objectionable tastes to drinking water at far lower concentration. Therefore, the treatment of phenol effluent is important. Among the various techniques of phenol wastewater treatment, microbial teratment is a popular process. The breakdown of phenols by microorganisms has recived considerable attention, because of its biochemical interest and its industrial importance in effluent treatment. This research was performed to investigate the dynamics of microbial community, biofilm growth and the comparison of phenol removal efficiency by RBC (Rotating Biological Contactor) using Rhodococcus sp. EL-GT The experiment was carried out at rotating speed of 10ppm and hydraulic retention time of 7 hours. As time passed, phenol removal efficiency was gained highly. The RBC using Rhodococcus sp. EL-GT completely degraded 15 mM.

  • PDF

Adsorption of Phenol on Mesoporous Carbon CMK-3: Effect of Textural Properties

  • Haque, Enamul;Khan, Nazmul Abedin;Talapaneni, Siddulu Naidu;Vinu, Ajayan;JeGal, Jong-Geon;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1638-1642
    • /
    • 2010
  • Mesoporous carbon CMK-3s with different textural properties have been used for the adsorption of phenol to understand the necessary physicochemical properties of carbon for the efficient removal of phenol from contaminated water. The kinetic constants (both pseudo-second order and pseudo-first-order kinetics) increase with increasing pore size of carbons. The maximum adsorption capacities correlate well with micropore volume compared with surface area or total pore volume even though large pore (meso or macropore) may contribute partly to the adsorption. The pore occupancies also explain the importance of micropore for the phenol adsorption. For efficient removal of phenol, carbon adsorbents should have large micropore volume and wide pore size for high uptake and rapid adsorption, respectively.

Removal of Toxic Pollutants from Aqueous Solutions by Adsorption onto Organo-kaolin

  • Sayed Ahmed, S.A.
    • Carbon letters
    • /
    • 제10권4호
    • /
    • pp.305-313
    • /
    • 2009
  • In this study, the adsorption of toxic pollutants onto cetyltrimethylammonium kaolin (CTAB-Kaolin) is investigated. The organo-kaolin is synthesized by exchanging cetyltrimethylammonium cations (CTAB) with inorganic ions on the surface of kaolin. The chemical analysis, the structural and textural properties of kaolin and CTAB-kaolin were investigated using elemental analysis, FTIR, SEM and adsorption of nitrogen at $-196^{\circ}C$. The kinetic adsorption and adsorption capacity of the organo-kaolin towards o-xylene, phenol and Cu(II) ion from aqueous solution was investigated. The kinetic adsorption data of o-xylene, phenol and Cu(II) are in agreement with a second order model. The equilibrium adsorption data were found to fit Langmuir equation. The uptake of o-xylene and phenol from their aqueous solution by kaolin, CTAB-kaolin and activated carbon proceed via physisorption. The removal of Cu(II) ion from water depends on the surface properties of the adsorbent. Onto kaolin, the Cu(II) ions are adsorbed through cation exchange with $Na^+$. For CTAB-kaolin, Cu(II) ions are mainly adsorbed via electrostatic attraction with the counter ions in the electric double layer ($Br^-$), via ion pairing, Cu(II) ions removal by the activated carbon is probably related to the carbon-oxygen groups particularly those of acid type. The adsorption capacities of CTAB-kaolin for the investigated adsorbates are considerably higher compared with those of unmodified kaolin. However, the adsorption capacities of the activated carbons are by far higher than those determined for CTAB-kaolin.

직류 전원과 펄스 전원을 이용하여 오염된 토양에서의 중금속과 페놀 처리 (Treatment of Heavy Metals and Phenol in Contaminated Soil Using Direct Current and Pulse Voltage)

  • 최창식;홍범의;최희영;이은실;최석순
    • 공업화학
    • /
    • 제27권6호
    • /
    • pp.606-611
    • /
    • 2016
  • 본 연구에서는 오염된 토양 속에 함유된 중금속과 페놀의 처리에 대하여 직류 전원과 펄스 전원을 적용하여 고찰하였다. 직류 전원을 사용하여 오염된 토양을 처리하였을 때 구리, 아연, 비소, 납의 제거 효율은 각각 70, 87, 12, 11%를 나타내었고, 페놀은 85% 이상이 제거되었다. 그리고 펄스 전원을 사용하였을 때 구리, 아연, 비소, 납의 제거효율이 각각 87, 91, 37, 38%이었으며, 페놀은 88% 제거되었다. 이러한 결과들은 펄스 전원을 오염된 토양에 적용하였을 때, 전기삼투 현상은 낮아졌지만 중금속들의 전류이동 속도가 증가함을 알 수 있었다. 또한 토양의 점토 성분에 의한 흡착 능력의 향상으로 인하여 비소와 납의 제거효율이 증가되었다. 따라서 이러한 직류 전원과 펄스 전원을 이용하는 동전기 실험 결과들은 여러 가지 중금속들과 페놀을 처리하는 복원 기술로 유용하게 활용될 수 있을 것이다.

Phenol함유 폐수의 처리에서 분말 활성탄 첨가의 영향 (Effects of Fine Powder Active Carbon Addition on the Wastewater Treatment Containing Phenol)

  • 강선태;김정목
    • 한국환경보건학회지
    • /
    • 제22권3호
    • /
    • pp.98-102
    • /
    • 1996
  • This study investigated performance of the phenol degradation and reaction characteristics according to variation of phenol volumetric loading rates and dilution rates in suspension and PACT reactors using Pseudomonas sp. B3. 1. Removal efficiencies of the PAC unit indicated about 100 % with phenol volumetric loading rates from 0.4 phenol $kg/ma^3\cdot d$ to 1.2 phenol $kg/m^3\cdot d$, however, which of the suspension reactor showed about 100% with from 0.2 phenol $kg/m^3\cdot d$ to 0.75 phenol $kg/ma^3\cdot day$. 2. The cell density slightly was decreased from 298.2 mg/l to 272 mg/l, when dilution rate for suspension was reactor increased from 0.4 to 1.41 1/d, and also the cell density suddenly was decreased to 145.5 mg/l and was washed out at the dilution rate higher than 1.60 1/d. But the cell density for the PAC unit was linearly decreased with dilution rate of from 0.8 to 3.0 1/d, and showed 220.75 mg/l at maximum dilution rate. 3. The phenol utilization rate was increased from 0.008 to 0.031 phenol g/l$\cdot$h, when dilution rate for suspension reactor was increased from 0.4 to 1.5 1/d, however, the rate for the PAC unit was linearly increased from 0.017 to 0.061 phenol g/l$\cdot$h as variation changes from 0.017 to 0.061 phenol g/l$\cdot$h dilution rate.

  • PDF

복합 유기 오염물로 오염된 세립질 지반의 Electrokinetic 정화 처리에 관한 연구 (Electrokinetic Remediation of Organic Mixture Contaminated Soil)

  • 김수삼;한상재;김강호
    • 한국지반공학회논문집
    • /
    • 제18권4호
    • /
    • pp.349-356
    • /
    • 2002
  • 본 연구는 유류 화합물 중 phenol을 대표적인 친수성 유기 화합물로, phenanthrene을 대표적인 소수성 유기오염물로 선정하여 실내에서 인위적으로 오염시킨 세립질 지반에 EK 정화 실험을 실시하였다. 또한, 유기 오염물의 제거효율을 높이기 위해 기존의 양수처리에서 향상기법으로 사용하는 계면활성제를 이용한 향상기법을 연구하였다. 실내 bench 스케일 실험결과, 물에 대한 용해도가 높은 phenol은 비교적 쉽게 제거되었지만, 용해도가 낮은 phenanthrene은 거의 제거되지 않음을 알 수 있었다. 또한, 계면활성제를 적용한 향상기법에서 phenanthrene이 음극부 근처에서 누적되는 지연현상을 보였지만, 농도가 증가할수록 제거효율은 증가하였다. 가동시간을 증가시킨 실험을 통해 시간을 증가시키는 것이 계면활성제의 농도를 증가시키는 것보다 효과적인 것을 알 수 있었다.