DOI QR코드

DOI QR Code

Removal of Toxic Pollutants from Aqueous Solutions by Adsorption onto Organo-kaolin

  • Sayed Ahmed, S.A. (Department of physical Chemistry, National Research Centre)
  • Received : 2009.10.13
  • Accepted : 2009.12.04
  • Published : 2009.12.30

Abstract

In this study, the adsorption of toxic pollutants onto cetyltrimethylammonium kaolin (CTAB-Kaolin) is investigated. The organo-kaolin is synthesized by exchanging cetyltrimethylammonium cations (CTAB) with inorganic ions on the surface of kaolin. The chemical analysis, the structural and textural properties of kaolin and CTAB-kaolin were investigated using elemental analysis, FTIR, SEM and adsorption of nitrogen at $-196^{\circ}C$. The kinetic adsorption and adsorption capacity of the organo-kaolin towards o-xylene, phenol and Cu(II) ion from aqueous solution was investigated. The kinetic adsorption data of o-xylene, phenol and Cu(II) are in agreement with a second order model. The equilibrium adsorption data were found to fit Langmuir equation. The uptake of o-xylene and phenol from their aqueous solution by kaolin, CTAB-kaolin and activated carbon proceed via physisorption. The removal of Cu(II) ion from water depends on the surface properties of the adsorbent. Onto kaolin, the Cu(II) ions are adsorbed through cation exchange with $Na^+$. For CTAB-kaolin, Cu(II) ions are mainly adsorbed via electrostatic attraction with the counter ions in the electric double layer ($Br^-$), via ion pairing, Cu(II) ions removal by the activated carbon is probably related to the carbon-oxygen groups particularly those of acid type. The adsorption capacities of CTAB-kaolin for the investigated adsorbates are considerably higher compared with those of unmodified kaolin. However, the adsorption capacities of the activated carbons are by far higher than those determined for CTAB-kaolin.

Keywords

References

  1. Mortland, M. M.; Shaobal, S.; Boyd, S. A. Clays Clay Miner. 1986, 34, 581. https://doi.org/10.1346/CCMN.1986.0340512
  2. Ceyhan, O.; Guler, H.; Guler, R. Adsorp. Sci. Technol. 1999, 17, 469. https://doi.org/10.1177/026361749901700603
  3. Smith, J. A.; Jaffe, P. R.; Chiou, C. T. Environ. Sci. Technol. 1990, 24, 1167. https://doi.org/10.1021/es00078a003
  4. Xu, S.; boyd, S. A. Environ. Sci. Technol. 1995, 29, 3022. https://doi.org/10.1021/es00012a020
  5. Shen, Y. H. Colloids Surf. A 2004, 232, 143. https://doi.org/10.1016/j.colsurfa.2003.10.014
  6. Sheng, G.; Xu, S.; Boyd, S. A. Environ. Sci. Technol. 1996, 30, 1553. https://doi.org/10.1021/es9505208
  7. Boyd, S. A.; Mortland, M. M.; Chiou, C. T. Soil Sci. Soc. Am. J. 1988, 52, 652. https://doi.org/10.2136/sssaj1988.03615995005200030010x
  8. Boyd, S. A.; Shaobai, S.; Lee, J. F.; Mortland, M.M. Clays Clay Miner. 1988, 36, 125. https://doi.org/10.1346/CCMN.1988.0360204
  9. Zhu, L.; Li, Y.; Zhang, J. Environ. Sci. Technol. 1997, 31, 1407. https://doi.org/10.1021/es960641n
  10. Zhu, L.; Ren, X.; Yu, S. Environ. Sci. Technol. 1998, 32, 3374. https://doi.org/10.1021/es980353m
  11. Baskralingam, P.; Pulikesi, M.; Elango, D.; Ramamurti, V.; Sivanesan, S. J. Hazard. Mater. 2006, 128, 138. https://doi.org/10.1016/j.jhazmat.2005.07.049
  12. Huh, J.K.; Song, D.I; Jeon, Y.W. Sep. Sci. Technol. 2000, 35, 243. https://doi.org/10.1081/SS-100100154
  13. Stapleton, M.G.; Sparks, D.L.; Dentel, S.K. Environ. Sci. Technol. 1994, 28, 2330. https://doi.org/10.1021/es00062a017
  14. Wang, C. C.; Juang, L.C.; Lee, C. K.; Hsu, T.C.; Lee, J. F.; Chao, H. P. J. Colloid Interface Sci. 2004, 228, 27.
  15. El-Geundi, M. S.; Farrag, T. E.; Abd El-Ghany, H. M. Adsorp. Sci. & Technol. 2005, 23, 437. https://doi.org/10.1260/026361705774859938
  16. Bhuttacharyya, K. G.; Gupta, S. S. Sep. Purif. Technol. 2006, 50, 388. https://doi.org/10.1016/j.seppur.2005.12.014
  17. Ajmal, M.; Khan, A.; Ahmade, A. Water Res. 1998, 32, 3085. https://doi.org/10.1016/S0043-1354(98)00067-0
  18. Weber, W. J.; Morris, J. C. J. Sanit. Eng. Div. Am. Soc. C.V. Eng. 1963, 89, 31.
  19. Ozcan, A.; Sahin, M.; Ozcan, A. S. Adsorp. Sci. Tehnol. 2005, 23, 323. https://doi.org/10.1260/0263617054769987
  20. Wang, X.S.; Qin, Y.; Li, Z.F. Sep. Sci. Technol. 2006, 41, 747. https://doi.org/10.1080/01496390500527951
  21. Poots, V.; Mckay, G.; Healy, J. Water Res. 1976, 10, 1061. https://doi.org/10.1016/0043-1354(76)90036-1
  22. Xue-Song, W.; Jin, W.; Cheng, S. Adsorp. Sci. Technol. 2006, 6, 517.
  23. Giles, C. H.; Mac Ewan, T. H.; Nakhwa, S. N.; Smith, D. J. Chem. Soc. 1960, 3973.
  24. Guo, Z.; Zheng, S.; Zheng, Z.; Jiang, F.; Hu, W.; Ni, L. Water Res. 2005, 39, 1174. https://doi.org/10.1016/j.watres.2004.12.031
  25. Andini, S.; Cioffi, R.; Montagnaro, F.; Pisciotta, F.; Santero, L. Appl. Clay Sci. 2006, 31, 126. https://doi.org/10.1016/j.clay.2005.09.004
  26. Milton, J. R. "Surfactants and Interfacial Phenomena", John Wiley & Sons, New York, 1988, 35.
  27. Rupprecht, H.; Liebl, H. Kolloid, Z.Z. Polym. 1972, 250, 719. https://doi.org/10.1007/BF01498562
  28. Carrizosa, M. J.; Hermosin, M.; Koskinen, W. C.; Corneja, J. Soil Sci. Soc. Am. J. 2003, 67, 511. https://doi.org/10.2136/sssaj2003.0511
  29. Sheng, G.; Boyed, A. Clays Clay Miner. 2000, 48, 43. https://doi.org/10.1346/CCMN.2000.0480105
  30. Araceli, J.-A.; Roberto, L.-R.; Erika, P.-O.; Antonio, A.-P.; Rosa Maria, G.-C.; Javita, M.-B. Adsorp. Science & Technol. 2006, 24, 687. https://doi.org/10.1260/026361706781355000
  31. Rawajfih, Z.; Nsour, N. J. colloid Interface Sci. 2006, 298, 39. https://doi.org/10.1016/j.jcis.2005.11.063

Cited by

  1. Removal of Reactive Blue 19 dye from Aqueous Solution Using Natural and Modified Orange Peel vol.13, pp.4, 2012, https://doi.org/10.5714/CL.2012.13.4.212
  2. Use of Surfactant-Modified Zeolites and Clays for the Removal of Heavy Metals from Water vol.9, pp.4, 2017, https://doi.org/10.3390/w9040235