DOI QR코드

DOI QR Code

Three-dimensional Electrochemical Oxidation process using Nanosized Zero-valent Iron/Activated carbon as Particle electrode and Persulfate

나노영가철/활성탄 입자전극과 과황산을 이용한 3차원 전기화학적 산화공정

  • Min, Dongjun (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Kim, Cheolyong (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Ahn, Jun-Young (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Cho, Soobin (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Hwang, Inseong (Department of Civil & Environmental Engineering, Pusan National University)
  • 민동준 (부산대학교 사회환경시스템공학과) ;
  • 김철용 (부산대학교 사회환경시스템공학과) ;
  • 안준영 (부산대학교 사회환경시스템공학과) ;
  • 조수빈 (부산대학교 사회환경시스템공학과) ;
  • 황인성 (부산대학교 사회환경시스템공학과)
  • Received : 2018.12.14
  • Accepted : 2018.12.20
  • Published : 2018.12.31

Abstract

A three-dimensional electrochemical process using nanosized zero-valent iron (NZVI)/activated carbon (AC) particle electrode and persulfate (PS) was developed for oxidizing pollutants. X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were performed to characterize particle electrode. XRD and SEM-EDS analysis confirmed that NZVI was impregnated on the surface of AC. Compared with the conventional two-dimensional electrochemical process, the three-dimensional particle electrode process achieved three times higher efficiency in phenol removal. The system with current density of $5mA/cm^2$ exhibited the highest phenol removal efficiency among the systems employing 1, 5, and $10mA/cm^2$. The removal efficiency of phenol increased as the Fe contents in the particle electrode increased. The particle electrode achieved more than 70% of phenol removal until it was reused for three times. The sulfate radical played a predominant role in phenol removal according to the radical scavenging test.

Keywords

JGSTB5_2018_v23n6_104_f0001.png 이미지

Fig. 1. XRD patterns of particle electrode (NZVI/AC).

JGSTB5_2018_v23n6_104_f0002.png 이미지

Fig. 2. SEM images of (a) AC, (b) NZVI/AC and (c) EDS analysis result of particle electrode (NZVI/AC).

JGSTB5_2018_v23n6_104_f0003.png 이미지

Fig. 3. Electrochemical degradation of phenol using particle electrode (phenol: 100 mg/L, persulfate: 2000 mg/L, NZVI/AC: 500 mg/L, Fe loading: 1%, EC: 5 mA/cm2, Na2SO4: 50 mM, initial pH: 3, temperature: 25℃).

JGSTB5_2018_v23n6_104_f0004.png 이미지

Fig. 4. Effect of current density on phenol degradation by particle electrode and persulfate (phenol: 100 mg/L, persulfate: 2000 mg/L, NZVI/AC: 500 mg/L, Fe loading: 0.2%, Na2SO4: 50 mM, initial pH: 3, temperature: 25℃).

JGSTB5_2018_v23n6_104_f0005.png 이미지

Fig. 5. Effect of Fe loading on (a) degradation of phenol and (b) decomposition of persulfate by particle electrode (phenol: 100 mg/L, persulfate: 2000 mg/L, NZVI/AC: 500 mg/L, Fe loading: 1%, EC: 5 mA/cm2, Na2SO4: 50 mM, initial pH: 3, temperature: 25℃).

JGSTB5_2018_v23n6_104_f0006.png 이미지

Fig. 6. Reusability test for particle electrode and evolution of total dissolved iron (phenol: 100 mg/L, persulfate: 2000 mg/L, NZVI/AC: 500 mg/L, Fe loading: 1%, EC: 5 mA/cm2, Na2SO4: 50 mM, initial pH: 3, temperature: 25℃).

JGSTB5_2018_v23n6_104_f0007.png 이미지

Fig. 7. Degradation of phenol in the presence of different radical scavengers ([radical scavenger]/[phenol]=100/1, persulfate: 2000 mg/L, NZVI/AC: 500 mg/L, Fe loading: 1%, EC: 5 mA/cm2, Na2SO4: 50 mM, initial pH: 3, temperature: 25℃).

Table 1. BET surface area, pore volume and pore size of the particle electrode (NZVI/AC)

JGSTB5_2018_v23n6_104_t0001.png 이미지

References

  1. Agustina, E., Goak, J., Lee, S., Seo, Y., Park, J., and Lee, N., 2015, Simple and precise quantification of iron catalyst content in carbon nanotubes using UV/Visible spectroscopy, Chemistryopen, 4(5), 613-619. https://doi.org/10.1002/open.201500096
  2. Al-Shamsi, M. A. and Thomson, N. R., 2013, Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron, Ind. Eng. Chem. Res., 52(38), 13564-13571. https://doi.org/10.1021/ie400387p
  3. Bagastyo, A.Y., Radjenovic, J., Mu, Y., Rozendal, R.A., Batstone, D.J., and Rabaey, K., 2011, Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes, Water Res., 45(16), 4951-4959. https://doi.org/10.1016/j.watres.2011.06.039
  4. Bandosz, T.J., 2002, On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures, J. Colloid Interface Sci., 246, 1-20. https://doi.org/10.1006/jcis.2001.7952
  5. Butkovskyi, A., Jeremiasse, A. W., Hernandez Leal, L., van der Zande, T., Rijnaarts, H., and Zeeman, G., 2014, Electrochemical conversion of micropollutants in gray water, Environ. Sci. Technol., 48(3), 1893-1901. https://doi.org/10.1021/es404411p
  6. Chaplin, B.P., 2014, Critical review of electrochemical advanced oxidation processes for water treatment applications, Environmental Science: Processes & Impacts, 16(6), 1182-1203. https://doi.org/10.1039/C3EM00679D
  7. Chen, L., Lei, C., Li, Z., Yang, B., Zhang, X., and Lei, L., 2018, Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants, Chemosphere, 210, 516-523. https://doi.org/10.1016/j.chemosphere.2018.07.043
  8. Franz, M., Arafat, H.A., and Pinto, N.G., 2000, Effect of chemical surface heterogeneity on the adsorption mechanisms of dissolved aromatics on activated carbon, Carbon, 38, 1807-1819. https://doi.org/10.1016/S0008-6223(00)00012-9
  9. House, D.A., 1962, Kinetics and mechanism of oxidations by peroxydisulfate, Chem. Rev., 62(3), 185-203. https://doi.org/10.1021/cr60217a001
  10. Jiang, X., Guo, Y., Zhang, L., Jiang, W., and Xie, R., 2018, Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano $Fe^0$ immobilized mesoporous carbon, Chem. Eng. J., 341, 392-401. https://doi.org/10.1016/j.cej.2018.02.034
  11. Karanfil, T. and Kilduff, J.K., 1999, Role of granular activated carbon surface chemistry on the adsorption of organic compounds. I: Priority pollutants, Environ. Sci. Technol., 33, 3217-3224. https://doi.org/10.1021/es981016g
  12. Kim, C., Ahn, J., Kim, T.Y., Shin, W.S., and Hwang, I., 2018, Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): Mechanisms and Transformation Products of NZVI, Environ. Sci. Technol., 52(6), 3625-3633. https://doi.org/10.1021/acs.est.7b05847
  13. Li, J., Lin, H., Zhu, K., and Zhang, H., 2017, Degradation of Acid Orange 7 using peroxymonosulfate catalyzed by granulated activated carbon and enhanced by electrolysis, Chemosphere, 188, 139-147. https://doi.org/10.1016/j.chemosphere.2017.08.137
  14. Li, Z., Yang, Q., Zhong, Y., Li, X., Zhou, L., Li, X., and Zeng, G., 2016, Granular activated carbon supported iron as a heterogeneous persulfate catalyst for the pretreatment of mature landfill leachate, Rsc Advances, 6(2), 987-994. https://doi.org/10.1039/C5RA21781D
  15. Liang, C., Lin, Y.T., and Shih, W.H., 2009b, Treatment of trichloroethylene by adsorption and persulfate oxidation in batch studies, Ind. Eng. Chem. Res., 48, 8373-8380. https://doi.org/10.1021/ie900841k
  16. Liu, Z., Zhao, C., Wang, P., Zheng, H., Sun, Y., and Dionysiou, D.D., 2018, Removal of carbamazepine in water by electro-activated carbon fiber-peroxydisulfate: Comparison, optimization, recycle, and mechanism study, Chem. Eng. J., 343, 28-36. https://doi.org/10.1016/j.cej.2018.02.114
  17. Naim, S. and Ghauch, A., 2016, Ranitidine abatement in chemically activated persulfate systems: assessment of industrial iron waste for sustainable applications, Chem. Eng. J., 288, 276-288. https://doi.org/10.1016/j.cej.2015.11.101
  18. Pendleton, P., Wong, S.H., Shumann, R., Levay, G., Denoyel, R., and Rouquerol, J., 1997, Properties of activated carbon controlling 2-methylisoborneol adsorption, Carbon, 35, 1141-1149. https://doi.org/10.1016/S0008-6223(97)00086-9
  19. Radjenovic, J. and Sedlak, D.L., 2015, Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water, Environ. Sci. Technol., 49(19), 11292-11302. https://doi.org/10.1021/acs.est.5b02414
  20. Salame, I.I. and Bandosz, T.J., 2003, Role of surface chemistry in adsorption of phenol on activated carbon, J. Colloid Interface Sci., 264, 307-312. https://doi.org/10.1016/S0021-9797(03)00420-X
  21. Thao, T.T., Kim, C., and Hwang, I., 2017, Application of nanosized zero-valent iron-activated persulfate for treating groundwater contaminated with phenol, Journal of Soil and Groundwater Environment, 22(1), 41-48. https://doi.org/10.7857/JSGE.2017.22.1.041
  22. Tseng, H., Su, J., and Liang, C., 2011, Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene, J. Hazard. Mater., 192(2), 500-506. https://doi.org/10.1016/j.jhazmat.2011.05.047
  23. Waclawek, S., Lutze, H.V., Grubel, K., Padil, V.V., Cerink, M., Dionysiou, D. D., 2017, Chemistry of persulfates in water and wastewater treatment: A review, Chem. Eng. J., 330, 44-62. https://doi.org/10.1016/j.cej.2017.07.132
  24. Wu, J., Zhang, H., and Qiu, J., 2012, Degradation of Acid Orange 7 in aqueous solution by a novel electro/$Fe^{2+}$/peroxydisulfate process, J. Hazard. Mater., 215, 138-145.
  25. Wu, X., Yang, Q., Xu, D., Zhong, Y., Luo, K., Li, X., Chen, H., and Zeng, G., 2013, Simultaneous adsorption/reduction of bromate by nanoscale zerovalent iron supported on modified activated carbon, Ind. Eng. Chem. Res., 52(35), 12574-12581. https://doi.org/10.1021/ie4009524
  26. Xu, J., Gao, N., Zhao, D., Zhang, W., Xu, Q., and Xiao, A., 2015, Efficient reduction of bromate in water by nano-iron hydroxide impregnated granular activated carbon (Fe-GAC), Chem. Eng. J., 275, 189-197. https://doi.org/10.1016/j.cej.2015.03.110
  27. Xu, L., Zhao, H., Shi, S., Zhang, G., and Ni, J., 2008, Electrolytic treatment of CI Acid Orange 7 in aqueous solution using a three-dimensional electrode reactor, Dyes and Pigments, 77(1), 158-164. https://doi.org/10.1016/j.dyepig.2007.04.004
  28. Yang, S., Yang, X., Shao, X., Niu, R., and Wang, L., 2011, Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature, J. Hazard. Mater., 186(1), 659-666. https://doi.org/10.1016/j.jhazmat.2010.11.057
  29. Zhang, C., Jiang, Y., Li, Y., Hu, Z., Zhou, L., and Zhou, M., 2013, Three-dimensional electrochemical process for wastewater treatment: a general review, Chem. Eng. J., 228, 455-467. https://doi.org/10.1016/j.cej.2013.05.033
  30. Zhou, M., Liu, L., Jiao, Y., Wang, Q., and Tan, Q., 2011, Treatment of high-salinity reverse osmosis concentrate by electrochemical oxidation on BDD and DSA electrodes, Desalination, 277(1-3), 201-206. https://doi.org/10.1016/j.desal.2011.04.030
  31. Zhu, X., Ni, J., Xing, X., Li, H., and Jiang, Y., 2011, Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system, Electrochim. Acta., 56(3), 1270-1274. https://doi.org/10.1016/j.electacta.2010.10.073