• Title/Summary/Keyword: phase-lag

Search Result 410, Processing Time 0.023 seconds

Survival and growth of the red tide organism Cochlodinium polykrikoides after the addition of yellow loess

  • Lee, Young-Sik;Lim, Wol-Ae;Lee, Sam-Geun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.282-285
    • /
    • 2008
  • At least 15% of the C polykrikoides cells that precipitated to the bottom layer either by the addition of loess or no addition survived for 1 week at all growth phases, rather than disappearing immediately after precipitating. However, no live cells were observed after 20 days, regardless of phase or loess addition. In the exponential phase, the number of C polykrikoides cells increased to >2886 cells/ml after loess was added. However, in the stationary phase, the number of cells did not increase until 18 days. In the exponential phase, those C polykrikoides that survived precipitation caused by scattering loess on cultures did not appear to have the ability to cause red tides again because of the short red tide periods in the field, long lag time after loess addition, and low survival rate after loess addition.

  • PDF

Development of the Six Degree-of-Freedom Active Vibration Isolation System by Using a Phase Compensated Velocity Sensor (위상 보상된 속도 센서를 이용한 6자유도 능동 방진 시스템의 개발)

  • Kim, Yong-Dae;Kim, Sang-Yoo;Park, Kyi-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1347-1352
    • /
    • 2009
  • Magnetic force driven six degree-of-freedom active vibration isolation system is developed. The velocity sensor using an electromagnetic principle that is commonly used in the vibration control is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. A lag-type compensator is adopted to reduce the phase lead and the stability test is performed by using a Bode analysis. The performance of the AVIS is validated by comparing with the passive isolation system by using the frequency responses.

Bacteria's Survival Curve on the Surface of Cement Composite (시멘트 복합체 표면의 자기치유 박테리아 생장 곡선)

  • Park, Ji Yoon;Jang, In Dong;Son, Da Som;Yi, Chong Ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.203-204
    • /
    • 2021
  • Bacteria used in self-healing concrete, which arrest the crack, helps increasing the durability is well known. However, the survival and activity of the bacteria are precisely unknown. In this research, to know the bacteria's survival curve on the surface of the cement composite, bacteria's survival curve has been measured by CFU at different curing days. The survival curve of 3 days and 7 days curing does not show the significant differences in their survival tendency. However, the slope of death phase of 7 days curing was steeper than the 3 days of curing. This research was focused on the death phase but for further research, set of interval time will be reduced and observe the lag phase and exponential phase.

  • PDF

A Study on the Phase Bandwidth Frequency of a Directional Control Valve based on the Metering Orifice (미터링 오리피스를 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Jeon, Sehyeong;Yun, Jooseop
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • The spool displacement of directional control valve can be considered as the standard signal to measure the bandwidth frequency of a directional control valve. When the spool displacement is not available, the metering-orifice system is implemented in this research as an alternative way of measuring the 90 degrees phase bandwidth frequency of the hydraulic directional control valve. The inertia effect on the transmission line oil induces the phase lead of the valve load pressure when compared with the phase of spool displacement. The capacitance effect of the oil induces the phase lag of the valve load pressure. The phase of the load pressure can be adjusted to be the same as that of the spool displacement by controlling the opening area of the metering orifice. A series of experiments were conducted to verify the effectiveness of the metering orifice. The 90 degrees phase bandwidth frequency measured from the valve load pressure was significantly deviated in some cases from the frequency of the spool displacement. The metering orifice was hard to be applied to measure the -90 degrees phase bandwidth frequency of the high precision.

Variation of Magnetic Field (By, Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

  • Moon, Ga-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.123-132
    • /
    • 2011
  • It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME)-driven storms, co-rotating interaction region (CIR)-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF $B_y$ and $B_z$ components (in geocentric solar magnetospheric coordinate system coordinate) during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst) index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of $B_z$ < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF $B_z$ (T1~T4) is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0%) under the $B_z$ < 0 condition. It is found that the correlation is highest between the time-integrated IMF $B_z$ and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is found between timeintegrated $B_z$ and time-integrated Dst index. The relationship between storm size and time lag in terms of hours from $B_z$ minimum to Dst minimum values is investigated. For the CME-driven storms, time lag of 26% of moderate storms is one hour, whereas time lag of 33% of moderate storms is two hours for the CIR-driven storms. The average values of solar wind parameters for the CME and CIR-driven storms are also examined. The average values of ${\mid}Dst_{min}{\mid}$ and ${\mid}B_{zmin}{\mid}$ for the CME-driven storms are higher than those of CIR-driven storms, while the average value of temperature is lower.

Study on Pressure Variation around an Open Cavity (공동 주위에서의 압력 변화에 대한 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.843-846
    • /
    • 2004
  • Cavity tone is generated due to the feedback between flow and acoustic wave. It is recognized that the period is determined by the time required for the flow convection in one direction, the time required for the acoustic propagation in the other direction and the time for phase shift depending on the flows and mode. Most of the phenomena have been investigated by experiments and a simple but fundamental theory. But the cause of the phase shift and the correctness of the theory have not been clearly explained so far. In this paper, the phenomena are calculated numerically to obtain detail information of flow and acoustic wave to explain the mechanism including the phase. High order high resolution scheme of optimized high order compact is used to resolve the small acoustic quantities and large flow quantities at the same time. The data are reduced using cross correlation function in space and time and cross spectral density function which has phase information. Abrupt change in pressure near corner in cavity is observed and is relate to phase variation. The time required for the feedback between the flow and acoustic wave is calculated after the numerical simulation f3r various modes. The periods based on the time calculated using the above method and direct observation from the acoustic waves generated and propagated in the numerical simulation are compared. It is found that no phase shift is required if we examine the time required carefully. Rossiter's formula for the cavity tone used for quick estimation needs to be modified far some modes.

  • PDF

Surface Texture Changes due to the Oxidation of Pyrite by Acidithiobacillus Ferrooxidans (애시디싸이오바실러스 페로악시댄스에 의한 황철석 산화에 따른 표면 조직의 변화)

  • Yu, Jae-Young;Koh, Hyun-Jin;Song, Hong-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.235-244
    • /
    • 2011
  • A batch experiment of pyrite oxidation was performed and the surfaces of the reacted pyrite were regularly observed with the scanning electron microscope (SEM) together with the chemical compositions of the solution to help understand the oxidation mechanisms of pyrite by Acidithiobacillus ferrooxidans (Af). The dissolved Fe concentrations clearly indicated that Af experiences the lag and then exponential growth phase. An Af cell was observed to be attached to the surface of pyrite during the lag, implying that a direct leaching by the microbe really happens for the period. It is not certain, however, whether the main mechanism of pyrite oxidation during that time was the direct leaching or not, because there were just a few cells confirmed to be attached and most of the dissolved Fe was Fe(III). The dissolved Fe concentration stayed almost constant from the mid-lag phase to just before the onset of the exponential phase, suggesting that AI needs an adaptation time to switch its oxidation mechanism from one to the other whichever it is during that stage of growth. The moment of Af's cell division was observed by SEM on the surface of pyrite during the lag phase. The corrosion outline around the dividing cell was quite similar to the shape of the cell itself, which implies that the rate of the microbial oxidation is very uneven and the rate when the cell metabolizes should be much faster than that calculated from the concentration variation of the dissolved Fe. The number of etch holes by Af is much higher on the inoculated surfaces, indicating the average rate of pyrite oxidation is also much faster than that of abiotic oxidation. The microbial etch holes on pyrite surface are small and deep, which may influence the transition of the growth phases of Af from lag to exponential.

A New Switching Method for Reducing switch loss of Single-phase three-level NPC inverter (스위치 손실 감소를 위한 단상 3레벨 NPC 인버터의 새로운 스위칭 방법)

  • Lee, Seung-Joo;Lee, June-Seok;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.268-275
    • /
    • 2015
  • This paper proposes a method of switching to improve power loss for the single-phase three-level NPC inverter. The conventional switching methods, which are called as the bipolar and unipolar switching methods, are used for single phase inverters using three-level topology. However, these switching method have disadvantage in the power loss. Because all of the switch are operated. To reduce the power loss of the three-level NPC inverter, clamp switching method is introduced in this paper. This way, one of the lag is fixed that switching loss is reduced. This paper analyzes and compares power losses of unipolar method and clamp method. The validity of the power loss analysis is verified through the simulation and experimental results.

Effects of Various Intensities and Wavelengths of Light Emitting Diodes (LEDs) on the Growth of the Prasinophytes Tetraselmis suecica and T. tetrathele (담녹조강 Tetraselmis suecica 및 Tetraselmis tetrathele의 생장에 미치는 발광다이오드(Light-Emitting Diodes; LEDs) 광량과 파장의 영향)

  • Han, Kyong Ha;Oh, Seok Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.1
    • /
    • pp.64-71
    • /
    • 2018
  • This study was conducted to investigate the effects of light intensity and wavelength on the growth of Tetraselmis suecica and Tetraselmis tetrathele. These species were exposed to a blue light-emitting diode (LED; max=450 nm), a yellow LED (max=590 nm), a red LED (max=630 nm) and a fluorescent lamp (three wavelengths). The maximum growth rates (${\mu}_{max}$) of T. suecica and T. tetrathele under a red LED were 1.12/day and 0.95/day, respectively. Under a yellow LED, growth rates were 70% of the values for red wavelength, with low half-saturation constants (Ks). The optimum light source to ensure economically effective and productive growth in a Tetraselmis culture system (Photo-Bioreactor) would thus appear to be a three-phase culture, wherein a yellow LED is used during the lag phase and initial exponential phase to increase growth rate, followed by a red LED during the middle exponential phase to maximize growth rate, and finally a yellow LED again during the late exponential phase and stationary phase to achieve increased yield of useful bioactive substances.

Analysis of Consistency and Accuracy for the Finite Difference Scheme of a Multi-Region Model Equation (다영역 모델 방정식의 유한차분계가 갖는 일관성과 정화성 분석)

  • 이덕주
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 2000
  • The multi-region model, to describe preferential flow, is an equation representing solute transport in soils by dividing soil into numerous pore groups and using the hydraulic properties of the soil. As the model partial differential equation (PDE) is solved numerically with finite difference methods. a modified equivalent partial differential equation(MEPDE) of the partial differential equation of the multi-region model is derived to analyze the accuracy and consistency of the solution of the model PDE and the Von Neumann method is used to analyze the stability of the finite difference scheme. The evaluation obtained from the MEPDE indicated that the finite difference scheme was found to be consistent with the model PDE and had the second order accuracy The stability analysis is performed to analyze the model PDE with the amplification ratio and the phase lag using the Von Neumann method. The amplification ratio of the finite difference scheme gave non-dissipative results with various Peclet numbers and yielded the most high values as the Peclet number was one. The phase lag showed that the frequency component of the finite difference scheme lagged the true solution. From the result of the stability analysis for the model PDE, it is analyzed that the model domain should be discretized in the range of Pe < 1.0 and Cr < 2.0 to obtain the more accurate solution.

  • PDF