• Title/Summary/Keyword: phase transformation temperature

Search Result 508, Processing Time 0.03 seconds

Study on the Relationship Between Microstructure and Creep-Rupture Behavior of GTD 111 (Ni기 초내열합금 GTD 111의 크리프 파단에 미치는 미세조직의 영향)

  • Sin, Hyeon-Jong;Kim, In-Su;Lee, Jae-Hyeon;Heo, Seong-Gang;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • Microstructural evolution and creep failure behavior of GTD 111 have been studied. Solidification and precipitation behaviors of the alloy during casting have been analyzed by microstructural observations. It has been found that MC carbides solidify just before the $\gamma$/$\gamma$' eutectic solidification. The ηphase was found to be formed by transformation of Ti-rich $\gamma$'phase. PFZ has formed in the vicinity of the transformed $\eta$ phase. A few MC particles, which have been identified as TaC, precipitated within the PFZ. Creep failure along grainboundary was dominant at and above $871^{\circ}C$. Creep failure above$ 871^{\circ}C$ was caused by the propagation of surface cracks and internal cracks. Creep crack has initiated at the microporosities embedded on the grainboundary. The $\eta$phase and PFZ have been found to be little or no effect on creep crack initiation.

  • PDF

Over 8% efficient nanocrystal-derived Cu2ZnSnSe4 solar cells with molybdenum nitride barrier films in back contact structure

  • Pham, Hong Nhung;Jang, Yoon Hee;Park, Bo-In;Lee, Seung Yong;Lee, Doh-Kwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.426.2-426.2
    • /
    • 2016
  • Numerous of researches are being conducted to improve the efficiency of $Cu_2ZnSnSe_4$ (CZTSe)-based photovoltaic devices, which is one of the most promising candidates for low cost and environment-friendly solar cells. In this work, we concentrate on the back contact of the devices. A proper thickness of $MoSe_2$ in back contact structure is believed to enhance adhesion and ohmic contact between Mo back contact and absorber layer. Nevertheless, too thick $MoSe_2$ layers that are grown during high-temperature selenization process can impede the current collection, thus resulting in low cell performance. By applying molybdenum nitride as a barrier in back contact structure, we were able to control the thickness of $MoSe_2$ layer, which resulted in lower series resistance and higher fill factor of CZTSe devices. The phase transformation of Mo-N binary system was systematically studied by changing $N_2$ concentration during the sputtering process. With a proper phase of Mo-N fabricated by using an adequate partial pressure of $N_2$, the efficiency of CZTSe solar cells as high as 8.31% was achieved while the average efficiency was improved by about 2% with respect to that of the referent cells where no barrier layer was employed.

  • PDF

Nickel Silicide Nanowire Growth and Applications

  • Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.215-216
    • /
    • 2013
  • The silicide is a compound of Si with an electropositive component. Silicides are commonly used in silicon-based microelectronics to reduce resistivity of gate and local interconnect metallization. The popular silicide candidates, CoSi2 and TiSi2, have some limitations. TiSi2 showed line width dependent sheet resistance and has difficulty in transformation of the C49 phase to the low resistive C54. CoSi2 consumes more Si than TiSi2. Nickel silicide is a promising material to substitute for those silicide materials providing several advantages; low resistivity, lower Si consumption and lower formation temperature. Nickel silicide (NiSi) nanowire (NW) has features of a geometrically tiny size in terms of diameter and significantly long directional length, with an excellent electrical conductivity. According to these advantages, NiSi NWs have been applied to various nanoscale applications, such as interconnects [1,2], field emitters [3], and functional microscopy tips [4]. Beside its tiny geometric feature, NW can provide a large surface area at a fixed volume. This makes the material viable for photovoltaic architecture, allowing it to be used to enhance the light-active region [5]. Additionally, a recent report has suggested that an effective antireflection coating-layer can be made with by NiSi NW arrays [6]. A unique growth mechanism of nickel silicide (NiSi) nanowires (NWs) was thermodynamically investigated. The reaction between Ni and Si primarily determines NiSi phases according to the deposition condition. Optimum growth conditions were found at $375^{\circ}C$ leading long and high-density NiSi NWs. The ignition of NiSi NWs is determined by the grain size due to the nucleation limited silicide reaction. A successive Ni diffusion through a silicide layer was traced from a NW grown sample. Otherwise Ni-rich or Si-rich phase induces a film type growth. This work demonstrates specific existence of NiSi NW growth [7].

  • PDF

Thermochemical Sulfate Reduction Simulation Experiments on the Formation and Distribution of Organic Sulfur Compounds in the Tuha Crude Oil

  • Yue, Changtao;Li, Shuyuan;Song, He
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2057-2064
    • /
    • 2014
  • Thermochemical sulfate reduction (TSR) was conducted in autoclave on the system of crude oil and $MgSO_4$ at different temperatures. Gas chromatography pulsed flame photometric detector (GC-PFPD) was used to detected the composition of organic sulfur compounds in oil phase products. The results of the analysis indicate that with increased temperature, the contents of organic sulfur compounds with high molecular weight and thermal stability, such as benzothiophenes and dibenzothiophenes, gradually became dominated. In order to gain greater insight into the formation and distribution of organic sulphur compounds from TSR, positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in detecting the detailed elemental composition and distribution of them. The mass spectra showed that the mass range of sulfur compounds was 200-550 Da. Four sulfur class species, $S_1$, $N_1S_1$, $O_1S_1$ and $O_2S_1$, were assigned in the positive-ion spectrum. Among the identified sulfur compounds, the $S_1$ class species was dominant. The most abundant $S_1$ class species increase associated with the DBE value and carbon number increasing which also indicates the evolution of organic sulfur compounds in TSR is from the labile series to the stable one. In pure blank pyrolysis experiments with crude oil cracking without TSR, different composition and distribution of organic sulfur compounds in oil phase products were seen from mass spectra in order to evaluate their pyrolysis behaviors without $MgSO_4$. FT-IR and XRD were used in analyzing the products of solid phases. Two distinct crystallographic phases MgO and $MgSO_4$ are found to coexist in the products which demonstrated the transformation of inorganic sulfur compounds into organosulfur compounds exist in TSR.

Structural, Optical and Photocatalyst Property of Copper-doped TiO2 Thin Films by RF Magnetron Co-sputtering (동시 스퍼터링법을 이용하여 Cu 도핑한 TiO2 박막의 구조적, 광학적 및 광분해 특성)

  • Heo, Min-Chan;Hong, Hyun-Joo;Hahn, Sung-Hong;Kim, Eui-Jung;Lee, Chung-Woo;Joo, Jong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.104-109
    • /
    • 2006
  • Cu-doped $TiO_2$ thin films were prepared by RF magnetron co-sputtering, and their structural, optical and photodegradation. properties were examined as a function of calcination temperature. XRD results showed that the crystallite size of Cu/$TiO_2$ thin films was bigger than that of the pure $TiO_2$ thin films. SEM results revealed that the agglomerated particle size of the Cu/$TiO_2$ films was more uniform and smaller than that of pure $TiO_2$ films. The absorption edge of thin films calcined at $900^{\circ}C$ was red shifted, resulting from the phase transformation from anatase to rutile phase, and the transmittance of the thin film rapidly decreased due to an increase in particle size. The photodegradation properties of the Cu/$TiO_2$ thin films were superior to those of the pure $TiO_2$ thin films.

The Effect of HEMM on Microstructure and Mechanical Properties of Ti-Nb Alloy for Implant Biomedical Materials (생체의학 임플란트재료로서 Ti-Nb계 합금의 조직과 기계적 성질에 미치는 HEMM의 영향)

  • Woo, Kee-Do;Choi, Gab-Song;Lee, Hyun-Bum;Kim, In-Yong;Zhang, Deliang
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.587-592
    • /
    • 2007
  • Al-42wt%Nb powder was prepared by high-energy mechanical milling(HEMM). The particle size, phase transformation and microstructure of the as-milled powder were investigated by particle size distribution (PSD) analyzer, scanning electron microscopy (SEM), X-ray diffractometery (XRD), transmission electron microscopy (TEM)and differential thermal analysis (DTA). The milled powders were heated to a sintering temperature at 1000C with under vaccum with vaccum tube furnace. Microstructural examination of sintered Ti-42wt%Nb alloy using 4h-milled powder showed Ti-rich phases (${\alpha}$-Ti) which are fine and homogeneously distributed in the matrix (Nb-rich phase: ${\beta}$-Ti). The sintered Ti-42wt%Nb alloy with milled powder showed higher hardness. The microstructure of the as quenched specimens fabricated by sintering using mixed and milled powder almost are same, but the hardness of as quenched specimen fabricated by using mixed powder increased due to solution hardening of Nb in Ti matrix. The aging effect of these specimens on microstructural change and hardening is not prominent.

Effect of M2O3 on the Sinterbility and Electrical Conductivity of ZrO2(Y2O3) System(III) : Ceramics of the ZrO2-Y2O3-Ln2O3 System (ZrO2(Y2O3)계 세라믹스의 소결성과 전기전도도에 대한 M2O3의 영향(III) : ZrO2-Y2O3-Ln2O3계 세라믹스)

  • 오영제;정형진;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.123-132
    • /
    • 1987
  • Yttria-stabilized zirconia with erbia-lanthana were investigated with respect to the amount of Ln2O3 (Ln; Er, La) addition in the range of 0.5∼5 mol% to the base composition of 8 mol% yttriazirconia. Following analysis and measurement were adopted for the characterization of synthesizes of solid electrolyte; phase transformation, lattice parameter, crystallite size, relative density, chemical composition and SEM/EDS. Electrical conductivity by two-probe method versus temperature from 350$^{\circ}C$ to 800$^{\circ}C$ and frequency in the range of 5Hz∼13MHz by complex impedance method was also conducted together with the determination of oxygen ion transference number by EMF method for the evaluation of their electrical properties. The results were as followsing; Electrical conductivity were decreased with increase in Ln2O3 content, but their activation energies increased. In the case of La2O3 addition, espicially, its electrical conductivity was decreased owing to the segregation of second phases at the grain-boundary. Grain-boundary conductivity of the specimen contained 0.5 mol% Er2O3 exhibited a maximum conductivity among thecompositions experimented. However, their bulk conductivities decreased in both case. Oxygen ion transference number was also reduced with decrease in oxygen partial pressure. For example, in the case of Er2O3 addition it retained value in the range of 0.97∼0.94 abvove 4.74${\times}$10-2in oxygen partial pressure. With the increase in the quantities of the evaporation of additive components, the crystallite size of stabilized zirconia decreased, and their relative density also reduced owing to the formation of porosity in their matrices. In the case of La2O3 the sinterbility was improved in the limited amount of addition up to 0.5 mol%, in the same range of addition the strength of sintered bodies were improved perhaps owing to the precipitation of metastable tetragonal phase in the fully stabilized zirconia.

  • PDF

The Effect of Paint Baking on the Strength and Failure of Spot Welds for Advanced High Strength Steels (고강도 강판 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향)

  • Choi, Chul Young;Lee, Dongyun;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.967-976
    • /
    • 2011
  • Conventional fracture tests of resistance spot welds have been performed without consideration of the paint baking process in the automobile manufacturing line. The aim of this paper is to investigate the effect of the paint baking process on load carrying capacity and fracture mode for resistance spot welded 590 dual phase (DP), 780DP, 980DP, 590 transformation in duced plasticity (TRIP), 780TRIP and 1180 complex phase (CP) steels. With paint baking after resistance spot welding, the l-shape tensile test (LTT) and nano-indentation test were conducted on the as-welded and paint baked samples. Paint baking increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial interfacial fracture (PIF) to button fracture (BF). Improvement in fracture appearance after LTT is observed on weldments of 780 MPa grade TRIP steels, especially in the low welding current range with paint baking conditions. The higher carbon contents (or carbon equivalent) are attributed to the low weldability of the resistance spot welding of high strength steels. Improvement of the fracture mode and load carrying ability has been achieved with ferrite hardening and carbide formation during the paint baking process. The average nano-indentation hardness profile for each weld zone shows hardening of the base metal and softening of the heat affected zone (HAZ) and the weld metal, which proves that microstructural changes occur during low temperature heat treatment.

The Effect of Plasma Gas Composition on the Nanostructures and Optical Properties of TiO2 Films Prepared by Helicon-PECVD

  • Li, D.;Dai, S.;Goullet, A.;Granier, A.
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850124.1-1850124.12
    • /
    • 2018
  • $TiO_2$ films were deposited from oxygen/titanium tetraisopropoxide (TTIP) plasmas at low temperature by Helicon-PECVD at floating potential ($V_f$) or substrate self-bias of -50 V. The influence of titanium precursor partial pressure on the morphology, nanostructure and optical properties was investigated. Low titanium partial pressure ([TTIP] < 0.013 Pa) was applied by controlling the TTIP flow rate which is introduced by its own vapor pressure, whereas higher titanium partial pressure was formed through increasing the flow rate by using a carrier gas (CG). Then the precursor partial pressures [TTIP+CG] = 0:027 Pa and 0.093 Pa were obtained. At $V_f$, all the films exhibit a columnar structure, but the degree of inhomogeneity is decreased with the precursor partial pressure. Phase transformation from anatase ([TTIP] < 0.013 Pa) to amorphous ([TTIP+CG] = 0:093 Pa) has been evidenced since the $O^+_2$ ion to neutral flux ratio in the plasma was decreased and more carbon contained in the film. However, in the case of -50 V, the related growth rate for different precursor partial pressures is slightly (~15%) decreased. The columnar morphology at [TTIP] < 0.013 Pa has been changed into a granular structure, but still homogeneous columns are observed for [TTIP+CG] = 0:027 Pa and 0.093 Pa. Rutile phase has been generated at [TTIP] < 0:013 Pa. Ellipsometry measurements were performed on the films deposited at -50 V; results show that the precursor addition from low to high levels leads to a decrease in refractive index.

The Effect of Vandium on the microstructure and Elevated Temperature Sliding Wear Resistance of Fe-20Cr-1.7C-1Si-xV Hardfacing Alloy (Fe-20Cr-1.7C-1Si-xV 경면처리 합금의 미세조직과 고온 Sliding 마모저항성에 미치는 Vanadium의 영향)

  • Kim, Jun-Gi;Kim, Geun-Mo;Lee, Deok-Hyeon;Jang, Se-Gi;Gang, Seong-Gun;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.969-974
    • /
    • 1998
  • The effect of vanadium, which is known to decrease the stacking fault energy of Fe-base alloys, on the microstructure and elevated temperature sliding wear resistance of Fe-20Cr- 1.7C- 1Si alloy was investigated. The maximum amount of vanadium maintaining the austenitic matrix seems to be about 3wt.% in Fe-20Cr- 1.7C-1Si-xV (x = 0, 1, 3, 6. lOwt.%) alloys and the austenitic alloys showed better wear resistance than ferritic alloys. It was considered to be due to the low stacking fault energy and $\gamma->\alpha$ strain-induced phase transformation at rmm temperature. It was shown from elevated temperature sliding tests up to .$225^{\circ}C$ that the addition of vanadium increases the temperature, at which the transition from oxidative wear to adhesive wear occur, and the amount of d formed at $225^{\circ}C$. Thus, it was considered that the addition of vanadium improves the elevated temperature sliding wear resistance of Fe-20Cr- 1.7C - 1Si by reducing the increasing rate of stacking fault energy with temperature and by increasing Ma temperature.

  • PDF