DOI QR코드

DOI QR Code

The Effect of Paint Baking on the Strength and Failure of Spot Welds for Advanced High Strength Steels

고강도 강판 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향

  • Choi, Chul Young (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Dongyun (Department of Nano Fusion Technology, Pusan National University) ;
  • Kim, In-Bae (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Yangdo (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Yeong-Do (Department of Advanced Materials Engineering, Dong-Eui University)
  • Received : 2011.10.10
  • Published : 2011.12.25

Abstract

Conventional fracture tests of resistance spot welds have been performed without consideration of the paint baking process in the automobile manufacturing line. The aim of this paper is to investigate the effect of the paint baking process on load carrying capacity and fracture mode for resistance spot welded 590 dual phase (DP), 780DP, 980DP, 590 transformation in duced plasticity (TRIP), 780TRIP and 1180 complex phase (CP) steels. With paint baking after resistance spot welding, the l-shape tensile test (LTT) and nano-indentation test were conducted on the as-welded and paint baked samples. Paint baking increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial interfacial fracture (PIF) to button fracture (BF). Improvement in fracture appearance after LTT is observed on weldments of 780 MPa grade TRIP steels, especially in the low welding current range with paint baking conditions. The higher carbon contents (or carbon equivalent) are attributed to the low weldability of the resistance spot welding of high strength steels. Improvement of the fracture mode and load carrying ability has been achieved with ferrite hardening and carbide formation during the paint baking process. The average nano-indentation hardness profile for each weld zone shows hardening of the base metal and softening of the heat affected zone (HAZ) and the weld metal, which proves that microstructural changes occur during low temperature heat treatment.

Keywords

References

  1. J. W. Son, D. G. Nam, D. C. Kim, and Y. D. Park, J. KWS 28, 186 (2010).
  2. S. S. Park, S. M. Lee, Y. J. Cho, N. H. Kang, J. H. Yu, Y. S. Kim, and Y. D. Park, Kor. J. Met. Mater. 6, 672 (2008).
  3. S. C. Yoon, M. B. Moon, and Hyoung Seop Kim, Kor. J. Met. Mater. 48, 598 (2010).
  4. S. M. Lee and Y. D. Park, Kor. J. Met. Mater. 48, 71 (2010) https://doi.org/10.3365/KJMM.2010.48.01.071
  5. T. K. Han, K. Y. Lee, and J. S. Kim, Kor. J. KWS 27, 131 (2009).
  6. J. W. Chang and J. H. Chung, Kor. J. Met. Mater. 26, 999 (1998).
  7. I. D. Choi, D. M. Kim, D. M. Bruce, D. K. Matlock, J. C. Speer, and S. H. Park, Kor. J. Met. Mater. 43, 263 (2005).
  8. M. Tumuluru, Welding Journal 89, 91 (2010).
  9. Toru Okada, Sullivan smith, Nick den Uijl, Tony van der Veldt, Masato Uchihara, and Kiyoyuki Fukui, Japan Welding Society 30, 175 (2008).
  10. Murali D. Tumuluru, Sheet Metal Welding Conference XI. 11-14, 1 (2004).
  11. JIS Z 3136-1999, Specimen dimensions and procedure for shear testing resistance spot and embossed projection welded joints.
  12. W. C. Oliver and G. M. Pharr, J. Mater. 7, 1564 (1992).
  13. B. N. Lucas and W. C. Oliver, Metall. Mater. Trans. A30, 601 (1999).
  14. Z. C. Wang, S. J. Kim, C. G. Lee, and T. H. Lee, J. Meterials Processing Technology 151, 141 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.029
  15. G. Mukhopadhyay, S. Bhattacharya, and K. K. Ray, Materials & Design. 30, 2435 (2009). https://doi.org/10.1016/j.matdes.2008.10.014
  16. T. Saito, Welding Technique. 31, 27 (1983).
  17. H. Takechi and O. Akisue, Proc. of International Conference on HSLA Steels, Metallurgy and Applicaions, Beijing, People's Republic of China. p. 997 (1985).
  18. M. Marya and X. Q. Gayden, American Welding Journal 84, 172 (2005).
  19. C. Y. Choi, D. Y. Choi, Y. D. Kim, and Y. D. Park, Korean Welding and Joining Society Conference p. 54 (2010).
  20. V. H. Baltazar Hernandez, M. L. Kuntz, M. I. Khan, and Y. Zhou, Science and Technology of Welding and Joining 13, 769 (2008). https://doi.org/10.1179/136217108X325470
  21. D. J. Radakovic and M. Tumulure, American Welding Journal 87, 96 (2008).
  22. A. H. Cottrell and B. A. Bilby, Proc. Phys. Soc. 62, Ser. A, 49 (1949).
  23. L. Granas, Scandinavian Journal of Metallurgy 1, 255 (1972).
  24. G. R. Speich and W. C. Leslie, Met. Trans. 6, 1043 (1972).
  25. C. Y. Choi, J. K. Kim, J. K. Hong, J. T. Yeom, and Y. D. Park, J. Kor. Powder Metall. Inst. 19, 64 (2011).
  26. E. Bayraktar, D. Kaplan, L. Devillers, and J. P. Chevalier, Mater. Process Technol. 189, 114 (2007). https://doi.org/10.1016/j.jmatprotec.2007.01.012
  27. M. Xia, N. Sreenivasan, S. Lawson, Y. Zhou, and Z. Tian, J. Eng. Mater. Technol. 129, 445 (2007).