• Title/Summary/Keyword: phase inversion emulsification

Search Result 19, Processing Time 0.024 seconds

Effect of Direct Emulsification Method and Invert Emulsification Method On Droplet Size of O/W Emulsion (O/W 에멀젼 입자의 크기에 미치는 Direct 유화법과 Invert유화법의 효과)

  • 김철훈;박재길
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.20 no.1
    • /
    • pp.64-81
    • /
    • 1994
  • O/W emulsions with mixed nonionic surfactants(polyoxyethylene(20)sorbitan monostearate/sorbitan sesquioleate), liquid paraffin, water prepared by direct inversion emulisification method and continuous inversion emulsification Method. The one-step, two-step and three-step phase inversion emulsification method were used in experiments. Effect of added water on droplet size of final O/W emulsions which is prepared by phase inversion emulsification method were investigated. In direct inversion emulsification method(two-step emulsification method), fine and homogeneous droplets of OIW emulsions were formed after phase inversion steps i.e. ,W/O - (W/O) If double emulsion - O/W emulsion. In continuous inversion emulsification method(three-step emulsification method), fine and homogeneous O/W emulsion were formed after phase inversion steps i.e., W/O - pseudomicroemulsion - O/W. By latter method, more Fine and homogenuous droplets were formed than former method. 10-10, 8 HLB region of mixed non-ionic surfactants could produce most fine droplets. This HLB region had maximum values of solubilization water and This HLB value of mixed nonionic surfactants produced fine and homogenuous droplets.

  • PDF

Phase Inversion Emulsification and Enhancement of Physical Properties for Cationic Emulsified Asphalt

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.265-273
    • /
    • 2015
  • In this work, the emulsified asphalt with high phase stability and storage stability was prepared by using phase inversion emulsification and the surfactant mixed with cationic and nonionic surfactants. It was found that the asphalt together with Span 20, nonionic surfactant and DDA (Dimethyl Dodecyl Amine), cationic surfactant showed the most stable phase. The phase stability of the emulsified asphalt, therefore, was investigated through the particle size with mixed surfactant content, rheology behavior and Zeta potential value; the particle size decreased with the increase of the mixed surfactant content but the viscosity increased. The shear thinning behaviors and the Zeta potential value with 50 mV~60 mV were shown, which was found to be considered stable. In addition, SBR latex(Styrene-butadiene-rubber) and water dispersed Epoxy (EPD) were used to enhance the physical properties of the emulsified asphalt. The swelling and adhesion features of the emulsified asphalt were also studied with $CaCO_3$, Silica, and Montmorillonite (MMT). It was shown that the addition of SBR latex and MMT can be another way to improve the physical properties of the emulsified asphalt in that the lowest swelling feature was found.

Stabilization of Chlorosulfonated Polyethylene (CSM) Rubber Emulsion with Surfactant Mixture (혼합 계면활성제를 이용한 Chlorosulfonated Polyethylene (CSM) Rubber의 유화안정성 연구)

  • Lee, Eun-Kyoung;Choi, Seo-Young;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.246-254
    • /
    • 2001
  • In this work, the stabilization of chlorosulfonated polyethylene (CSM) rubber emulsion with surfactants, i.e., nonionic (Span 60) or anionic (Sodium laurylsulfate, SLS) surfactants, was investigated. The phase inversion emulsification by interfacial chemical characteristics was used to emulsify the CSM rubber. As a result, the emulsion phase separation was observed in the case of any single surfactant. However, there was no phase separation in the mixture of Span 60 and SLS in the context of emulsion droplet size tests and rheological behaviors. The droplet size decreases by increasing the surfactant mixture, resulting in increasing the viscosity. The viscosity and shear stress determined from shear rate show a shear thinning and yield behaviors. It was then found that the emulsion stabilization can be improved using the phase inversion emulsification method and surfactant mixture.

  • PDF

A Study on the Stabilization of Asphalt Emulsion with Phase Inversion Emulsification Method (반전유화법에 의한 유화아스팔트의 안정성 연구)

  • Heo, Woo-Sung;Lee, Eun-Kyoung;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.143-149
    • /
    • 2009
  • In this study, asphalt emulsion was manufactured by phase inversion emulsification method with nonionic surfactants(Span 80, Span 60, Tween 80, and Tween 60), anionic surfactant(SLS) and cationic surfactant(Imidazole) in different feeding ratio to make up for the week points of asphalt. Its stabilization was carefully investigated with respect to droplet size, viscosity, zeta potential, and water-proofing property. When the surfactants mixed with nonionic and anionic surfactant were used into the asphalt, a stabilization of the asphalt emulsion was good. As the amount of the mixed surfactant was increased, the droplet size of asphalt emulsion were decreased, while the viscosity and zeta potential were increased. When the surfactants mixed with nonionic and anionic surfactant were used into the asphalt, a stabilization of asphalt emulsion was good.

The Flow Properties and Stability of O/W Emulsion Composed of Various Mixed Nonionic Surfactants 1. The Phase Behavior and Flow Properties of O/W Emulsion Prepared with the Inversion Emulsification Method (혼합비이온계면활성제의 조성에 따른 O/W 에멀젼의 유동특성 및 안정성 1. 반전유화법을 이용한 O/W 에멀젼의 상거동 및 유동특성)

  • Lee, Ho-Sik;Kim, Jum-Sik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.196-203
    • /
    • 1993
  • Emulsions were prepared with the inversion emulsification method which adopted the agent-in-oil method-dissolving the mixed surfactants composed of the glycerin monostearate, polyoxyethylene(100) monostearate, and polyoxyethylene(20) sorbitan monostearate into mixtures of liquid paraffin and beeswax, and adding the aqueous solution of propylene glycol, gradually-and then their phases and viscosities behaviors in the emulsifying process were investigated. The fine and homogeneous o/w emulsions were formed in the HLB region (HLB 10.1~12.3), showing liquid crystalline phase and white gel phase in the emulsifying process. The phase inversion steps in the emulsifying process appeared as follows, i.e., oil continuous phase${\rightarrow}$liquid crystalline phase${\rightarrow}$white gel phase${\rightarrow}$o/w emulsion. Shear rate-shear stress curves of the prepared emulsions had the yield values which pointed out the existence of inner structure between emulsion particles, and the hysteresis loop which showed that the inner structure wasbroken irreversibly by the shear. The area of hystersis loop, an index of breakdown of inner structure, was increased with the decreasing of the HLB value of emulsifier, Shear time-shear stress curves showed the time dependence of plastic viscosity, and the relaxation time in time thinning behavior(${\lambda}$) indicated that the stability of emulsions prepared with the inversion emulsification method was decreased with the increasing of HLB values of emulsifier and was higher than that of emulsions prepared by homomixer.

  • PDF

Candelilla Wax Nanoemulsions Prepared by Phase Inversion Composition (PIC) Method

  • Kim, Eun-Hee;Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.203-209
    • /
    • 2014
  • Candelilla wax-in-water nanoemulsions stabilized by Span 80/Tween 80 were prepared by the phase inversion composition (PIC) method. Stable nanoemulsions with droplet diameters below 50 nm could be formed when the hydrophilic-lipophilic balance (HLB) values were between 13.5 and 14.5, surfactant concentration was 5.0 wt%, and the surfactant-wax ratio was 1:1. Increased emulsification temperature and cooling rate were found to improve the emulsion properties. Process of PIC (adding aqueous phase to the wax phase) produced smaller droplet size nanoemulsion compared to the process of adding wax phase to the aqueous phase. The stability of these nanoemulsions was assessed by following the change in droplet diameters with time of storage at room temperature (${\sim}25^{\circ}C$). The size remained constant during 2 months storage time.

Nanoemulsions: a Novel Vehicle for Cosmetics (나노에멀젼: 화장품을 위한 새로운 제형)

  • Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-21
    • /
    • 2011
  • This review describes several kinds of emulsification methods for nanoemulsions and the application of nanoemulsions. Nanoemulsion droplet sizes fall typically in the range of 20 ~200 nm and show narrow size distributions. Although most of the publications on either oil-in-water (O/W) or water-in-oil (W/O) nanoemulsions have reported their formation by dispersion or high-energy emulsification methods, an increased interest is observed in the study of nano-emulsion formation by condensation or low-energy emulsification methods based on the phase transitions that take place during the emulsification process. Phase behaviour studies have shown that the size of the droplets is governed by the surfactant phase structure (bicontinuous microemulsion or lamellar) at the inversion point induced by either temperature or composition. Studies on nanoemulsion formation by the phase inversion temperature (PIT) method have shown a relation between minimum droplet size and complete solubilization of the oil in a microemulsion bicontinuous phase independently of whether the initial phase equilibrium is single or multiphase. Due to their small droplet size nanoemulsions possess stability against sedimentation or creaming with Ostwald ripening forming the main mechanism of nanoemulsion breakdown. An application of nanoemulsions is the preparation of nanoparticles using a polymerizable monomer as the disperse phase where nanoemulsion droplets act as nanoreactors, cosmetics and controlled drug delivery. In this review, we mainly focus on the cosmetics.

Nanoemulsions containing Vitamin E acetate prepared by PIC(phase inversion composition) methods: Factors affecting droplet sizes

  • Kim, Eun-Hee;Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.602-611
    • /
    • 2013
  • We have investigated the influence of system composition and preparation conditions on the particle size of vitamin E acetate (VE)-loaded nanoemulsions prepared by PIC(phase inversion composition) emulsification. This method relies on the formation of very fine oil droplets when water is added to oil/surfactant mixture. The oil-to-emulsion ratio content was kept constant (5 wt.%) while the surfactant-to-oil ratio (%SOR) was varied from 50 to 200 %. Oil phase composition (vitamin E to medium chain ester ratio, %VOR) had an effect on particle size, with the smallest droplets being formed below 60 % of VOR. Food-grade non-ionic surfactants (Tween 80 and Span 80) were used as an emulsifier. The effect of f on the droplet size distribution has been studied. In our system, the droplet volume fraction, given by the oil volume fraction plus the surfactant volume fraction, was varied from 0.1 to 0.3. The droplet diameter remains less than 350 nm when O/S is fixed at 1:1. The droplet size increases gradually as the increasing the volume fraction. Particle size could also be reduced by increasing the temperature when water was added to oil/surfactant mixture. By optimizing system composition and homogenization conditions we were able to form VE-loaded nanoemulsions with small mean droplet diameters (d < 50 nm). The PIC emulsification method therefore has great potential for forming nanoemulsion-based delivery systems for food, personal care, and pharmaceutical applications.

Stability of Nano-emulsions Containing Fatty Acid and Fatty Alcohol (지방산 및 지방알코올을 함유한 나노에멀젼의 안정성)

  • Cho, Wan Goo;Kim, Kyung Ah;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • In this study, low viscous O/W (oil-in-water) nano-emulsion with fatty acid and fatty alcohol was prepared by phase inversion emulsification method using Tween 80 and Span 80 widely used in cosmetic products. The particle size of the nano-emulsion was increased as increasing the concentration of fatty alcohol in oil phase. Adjusting the HLB of mixed surfactants, a stable nano-emulsion with a narrow size distribution was produced. Similar change in viscosity and electrical conductivity in both systems containing fatty acid and fatty alcohol was shown in the vicinity of the phase inversion point. However, high viscosity was shown in a wide range of different aqueous fraction unlike the system consisting only oils and surfactants. The low viscous nano-emulsion with less than 100 nm droplet size was stable for one month or more at room temperature. O/W nano-emulsions with low viscosity containing fatty acid or fatty alcohol produced by low-energy emulsification method can be widely used as formulations of cosmetics.

Characterization of Emulsion Properties for D-limonene (D-리모넨 오일의 유화특성)

  • 하윤식;장윤호;문현수;이정경;서무룡
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.875-881
    • /
    • 1998
  • Microemulsion is prepared by the method of phase inversion emulsification with d-limonene that is environmental friendly substance and nontoxic to human body as dispersed phase. Emulsifier used for preparation of microemulsion is nonionic surfactants, polyoxyethylene nonylphenyl ether. Stability of prepared microemulsion was estimated by the various method of ξ-potential, hydrodynamic diameter and electric conductivity. When d-limonene is emulsified by NP series, microemulsion is most stable and narrowly distributed at HLB value of 12.3(either one emulsifier or mixed emulsifiers). Stability of microemulsion is increased as the amount of emulsifiers is increased at same HLB value of 12.3. In the case of using the same amount of emulsifiers, number of produced micelle are relatively large as hydrodynamic diameter is small. Therefore, the state of microemulsion is stable and the electric conductivity is increased. One can determine that higher electric conductivity value means that microemulsion has more micelles and is more stable.

  • PDF