• 제목/요약/키워드: phase change materials

검색결과 828건 처리시간 0.032초

Experimental training of shape memory alloy fibres under combined thermomechanical loading

  • Shinde, Digamber;Katariya, Pankaj V;Mehar, Kulmani;Khan, Md. Rajik;Panda, Subrata K;Pandey, Harsh K
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.519-526
    • /
    • 2018
  • In this article, experimental training of the commercial available shape memory alloy fibre (SMA) fibre under the combined thermomechanical loading is reported. SMA has the ability to sense a small change in temperature (${\geq}10^{\circ}C$) and activated under the external loading and results in shape change. The thermomechanical characteristics of SMA at different temperature and mechanical loading are obtained through an own lab-scale experimental setup. The analysis is conducted for two types of the medium using the liquid nitrogen (cold cycle) and the hot water (heat cycle). The experimental data indicate that SMA act as a normal wire for Martensite phase and activated behavior i.e., regain the original shape during the Austenite phase only. To improve the confidence of such kind of behavior has been verified by inspecting the composition of the wire. The study reveals interesting conclusion i.e., while SMA deviates from the equiatomic structure or consist of foreign materials (carbon and oxygen) except nickel and titanium may affect the phase transformation temperature which shifted the activation phase temperature. Also, the grain structure distortion of SMA wire has been examined via the scanning electron microscope after the thermomechanical cycle loading and discussed in details.

Characterization of behaviors using electric pulse for phase switching operation of Ge2Sb2Te5 material

  • 이현철;최두진
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.322-322
    • /
    • 2016
  • Phase change memory (PCM) has attracted much attention as one of the most promising candidates for next-generation nonvolatile memory. In that regard, the purposes of the study are to propose reference of effective pulse parameter to control phase switching operation and to invest the effect of nitrogen doped in PCM materials for improved cycling stability and economic energy consumption. Switching operation of PCM is affected by electric pulse parameter and as shown in figure.1 are composed to RT(rising time), ST(setting time), FT(falling time) and the effect of these parameter was precisely investigated. Transmission electron microscope (TEM) was used to confirm fine structure and retention cycle test was conducted to confirm reliability. Finally improvement reliability and economic power consumption in quantitatively are obtainable by optimum pulse parameter and nitrogen doping in GST material. these study is related to the engineering background of other semiconductor industries and it have confirmed to possibility further applications.

  • PDF

Design of Novel 1 Transistor Phase Change Memory

  • Kim, Jooyeon;Kim, Byungcheul
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권1호
    • /
    • pp.37-40
    • /
    • 2014
  • A novel memory is reported, in which $Ge_2Sb_2Te_5$ (GST) has been used as a floating gate. The threshold voltage was shifted due to the phase transition of the GST layer, and the hysteretic behavior is opposite to that arising from charge trapping. Finite Element Modeling (FEM) was adapted, and a new simulation program was developed using c-interpreter, in order to analyze the small shift of threshold voltage. The results show that GST undergoes a partial phase transformation during the process of RESET or SET operation. A large $V_{TH}$ shift was observed when the thickness of the GST layer was scaled down from 50 nm to 25 nm. The novel 1 transistor PCM (1TPCM) can achieve a faster write time, maintaining a smaller cell size.

Magnetic Properties and Magnetocaloric Effect in Ordered Double Perovskites Sr1.8Pr0.2FeMo1-xWxO6

  • Hussain, Imad;Anwar, Mohammad Shafique;Khan, Saima Naz;Lee, Chan Gyu;Koo, Bon Heun
    • 한국재료학회지
    • /
    • 제28권8호
    • /
    • pp.445-451
    • /
    • 2018
  • We report the structural, magnetic and magnetocaloric properties of $Sr_{1.8}Pr_{0.2}FeMo_{1-x}W_xO_6$($0.0{\leq}x{\leq}0.4$) samples prepared by the conventional solid state reaction method. The X-ray diffraction analysis confirms the formation of the tetragonal double perovskite structure with a I4/mmm space group in all the synthesized samples. The temperature dependent magnetization measurements reveal that all the samples go through a ferromagnetic to paramagnetic phase transition with an increasing temperature. The Arrott plot obtained for each synthesized sample demonstrates the second order nature of the magnetic phase transition. A magnetic entropy change is obtained from the magnetic isotherms. The values of maximum magnetic entropy change and relative cooling power at an applied field of 2.5 T are found to be $0.40Jkg^{-1}K^{-1}$ and $69Jkg^{-1}$ respectively for the $Sr_{1.8}Pr_{0.2}FeMoO_6$ sample. The tunability of magnetization and excellent magnetocaloric features at low applied magnetic field make these materials attractive for use in magnetic refrigeration technology.

상전이 물질을 함유하는 수분산 PU에서 계면활성제의 효과 (Effects of Several Surfactants in the WBPU/Octadecane as a Phase Change Material)

  • Jang, Jae-Hyuk;Lee, Young-Hee;Kim, Han-Do
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.287-288
    • /
    • 2003
  • Polyurethane(PU) materials have been generally used in the automobile, paint, furniture, adhesive, and textile industries. The use of Waterborne PU was motivated form the environmental point of view, i.e. reduction of solvent emissions into the atmosphere(volatile organic compounds, VOC)[1]. Generally speaking, phase change materials (PCM) have the capability of absorbing or releasing thermal energy to reduce or eliminate heat transfer at the temperature range of the particular temperature stabilizing material[2]. (omitted)

  • PDF

벽체 내·외부에 시공한 PCM혼입 도료의 열적성능 평가에 관한 실험적 연구 (An experimental study on thermal performance evaluation of PCM mixed coating material constructed in and out of the wall)

  • 주동욱;신상헌;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.216-217
    • /
    • 2014
  • Optimum finishing position, thickness and phase change temperature of winter and summer season were selected and suitability of finishing materials was evaluated based on temperature measurement of specimens applying the coating material mixed phase change materials(PCM). As a result, when finishing position was interior and finishing thickness of coating material mixed n-Octadecane(28℃ PCM) was 4mm, thermal performance was effective. n-Octadecane in summer season and n-Hexadecane(18℃ PCM) in winter season are indicated effective on energy savings, respectively.

  • PDF

PRAM용 상변화 소재인 AgInSbTe의 전기적 특성에 대한 연구

  • 홍성훈;배병주;황재연;이헌
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.19.1-19.1
    • /
    • 2009
  • Phase change random access memory (PRAM)은 large sensing signal margin, fast programming speed, low operation voltage, high speed operation, good data retention, high scalability등을 가지는 가장 유망한 차세대 비휘발성 메모리이다. 현재 PRAM용 상변화 재료로는 주로 Ge2Sb2Te5가 사용되고 있지만 reset 전류가 높고 reliability 가 좋지 않아서 새로운 상변화 물질 연구가 필요하다. AgInSbTe (AIST)는 GST와 더불어 열에 의한 가역적 상변화를 하는 소재로 광기록 매체에서는 기록 속도가 빠르고 동작 특성이 우수하다는 특징이 있다. 본 연구에서는 XRD, 비저항측정등을 통해 온도에 따른 AIST의 물성 및 결정화 특성을 분석하고 나노 소자제작을 통해 그 전기적 특성을 평가하였다.

  • PDF