Browse > Article
http://dx.doi.org/10.12989/sem.2018.68.5.519

Experimental training of shape memory alloy fibres under combined thermomechanical loading  

Shinde, Digamber (Department of Industrial Design, NIT Rourkela)
Katariya, Pankaj V (Department of Mechanical Engineering, NIT Rourkela)
Mehar, Kulmani (Department of Mechanical Engineering, NIT Rourkela)
Khan, Md. Rajik (Department of Industrial Design, NIT Rourkela)
Panda, Subrata K (Department of Mechanical Engineering, NIT Rourkela)
Pandey, Harsh K (Dr. C.V. Raman Institute of Science & Technology)
Publication Information
Structural Engineering and Mechanics / v.68, no.5, 2018 , pp. 519-526 More about this Journal
Abstract
In this article, experimental training of the commercial available shape memory alloy fibre (SMA) fibre under the combined thermomechanical loading is reported. SMA has the ability to sense a small change in temperature (${\geq}10^{\circ}C$) and activated under the external loading and results in shape change. The thermomechanical characteristics of SMA at different temperature and mechanical loading are obtained through an own lab-scale experimental setup. The analysis is conducted for two types of the medium using the liquid nitrogen (cold cycle) and the hot water (heat cycle). The experimental data indicate that SMA act as a normal wire for Martensite phase and activated behavior i.e., regain the original shape during the Austenite phase only. To improve the confidence of such kind of behavior has been verified by inspecting the composition of the wire. The study reveals interesting conclusion i.e., while SMA deviates from the equiatomic structure or consist of foreign materials (carbon and oxygen) except nickel and titanium may affect the phase transformation temperature which shifted the activation phase temperature. Also, the grain structure distortion of SMA wire has been examined via the scanning electron microscope after the thermomechanical cycle loading and discussed in details.
Keywords
shape memory alloy (SMA); thermo-mechanical cycle (TMC); martensite transformation; phase change; liquid nitrogen (LN2);
Citations & Related Records
Times Cited By KSCI : 17  (Citation Analysis)
연도 인용수 순위
1 Stosic, Z., Manasijevic, D., Balanovic, L., Holjevac-Grguric, T., Stamenkovic, U., Premovic, M., Minic, D., Gorgievski, M. and Todorovic, R. (2017), "Effects of composition and thermal treatment of Cu-Al-Zn alloys with low content of Al on their shape-memory properties", Mater. Res., 20(5), 1425-1431.   DOI
2 Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769.   DOI
3 Totounferoush, A., Ovesy, H.R. and Ghannadpour, S.A.M. (2014) "Nonlinear dynamic buckling response analysis of piezocomposite plates subjected to in-plane loads", Proceedings of the 4th International Conference on Acoustics & Vibration (ISAV2014), Tehran, Iran, December.
4 Uchil, J., Mohanchandra, K.P., Kumara, K.G., Mahesh, K.K. and Murali, T.P. (1999), "Thermal expansion in various phases of Nitinol using TMA", Phys. B, 270(3-4), 289-297.   DOI
5 Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with $SiO_2$ nano-particles", Wind Struct., 24(1), 43-57.   DOI
6 Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki, M. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with $SiO_2$ nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85.   DOI
7 Abdelbaki, C., Bakora, A., Houari, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A.A. (2016b), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639.   DOI
8 Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by $SiO_2$ nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644.   DOI
9 Antunes, A.S., Santos, O.S., Naito, L.K.F., Rigo, O.D. and Otubo, J. (2018), "The wire drawing mechanics of near-equiatomic NiTi SMA", Mater. Res., 21(3), e20170944.
10 Arani, A.G., Kolahchi, R. and Barzoki, A.A.M. (2011), "Effect of material in-homogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric rotating shaft", Appl. Math. Modell., 35, 2771-2789.   DOI
11 Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578.   DOI
12 Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464.   DOI
13 Perkins, J. and Sponholz, R.O. (1984), "Stress-induced martensitic transformation cycling and two-way shape memory training in Cu-Zn-Al alloys", Metall. Trans. A., 15(2), 313-321.   DOI
14 Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175.   DOI
15 Mouffoki, A., Bedia, E.AA., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383.   DOI
16 Nath, T., Chouhan, P., Disawal, R. and Palani, I.A. (2017), "Comparative study of electrically and hot water actuated shape memory alloy using developed thermo-mechanical cycle test bench", Def. Sci. J., 67(1), 101-107.
17 Ramaiah, K.V., Saikrishna, C.N., Dhananjaya, B.R. and Bhaumik, S.K. (2005), "Effects of thermo-mechanical cycling on the functional properties of Ni-Ti-Cu shape memory alloys", Proceedings of the International Conference on Smart Materials, Structures, and Systems.
18 Saikrishna, C.N., Ramaiah, K.V. and Bhaumik, S.K. (2006), "Effects of thermo-mechanical cycling on the strain response of Ni-Ti-Cu shape memory alloy wire actuator", Mater. Sci. Eng. A., 428(1-2), 217-224.   DOI
19 Saikrishna, C.N., Ramaiah, K.V., Prabhu, S.A. and Bhaumik, S.K. (2001), "On stability of NiTi wire during thermo-mechanical cycling", Bull. Mater. Sci., 32(3), 343-352.   DOI
20 Stachowiak, G.B. and McCormick, P.G. (1988), "Shape memory behaviour associated with the R and martensitic transformations in a NiTi alloy", Acta Metall., 36(2), 291-297.   DOI
21 Bouderba, B., Houari, M.S.A., Tounsi, A. and Hassan, S. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422.   DOI
22 Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016a), "Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation", Struct. Eng. Mech., 22(1), 91-112.
23 Stalmans, R., Humbeeck, J.V. and Delaey, L. (1991), "Training and the two-way memory effect in copper-based shape memory alloys", J. Phys. Colloq., 1(C4), C4-403-C4-408.
24 Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 22(4), 889-913.
25 Beldjelili, Y., Tounsi, A. and Hassan, S. (2016c), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786.   DOI
26 Bhagyaraj, J., Ramaiah, K.V., Saikrishna, C.N., Gouthama. and Bhaumik, S.K. (2013), "Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot", J. Alloys Compd., 581, 344-351.   DOI
27 Bhaumik, S.K., Saikrishna, C.N., Ramaiah, K.V. and Venkataswamy, M.A. (2008), "Understanding the fatigue behaviour of NiTiCu shape memory alloy wire thermal actuators", Key Eng. Mater., 378-379, 301-316.   DOI
28 Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)", Comput. Concrete, 18(5) 1053-1063.   DOI
29 Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297.   DOI
30 Bousahla, A.A., Benyoucef, S., Tounsi, A. and Samy Hassan, S. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335.   DOI
31 Barzoki, A.A.M., Arani, A.G., Kolahchi, R. and Mozdianfard, M.R. (2012), "Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core", Appl. Math. Modell., 36, 2983-2995.   DOI
32 El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595.   DOI
33 Churchill, C.B. and Shaw, J.A. (2008), "Shakedown response of conditioned shape memory alloy wire", Proceedings of the Behavior and Mechanics of Multifunctional and Composite Materials, 6929, 69291F-1-12.
34 Cuellar, E.L., Pavon, L.L., Mendoza, E.N., Araujo, C.J.D., Castro, W.B.D., Gonzalez, C. and Otubo, J. (2016), "Effect of spun velocities and composition on the microstructure and transformation temperatures of TiNi shape memory ribbons", Mater. Re., 19(5), 1132-1137.   DOI
35 Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A. and Wagner, M. (2004), "Structural and functional fatigue of NiTi shape memory alloys", Mater. Sci. Eng. A., 378(1-2), 24-33.   DOI
36 Erbstoeszer, B., Armstrong, B., Taya, M. and Inoue, K. (2000), "Stabilization of the shape memory effect in NiTi: An experimental investigation", Scr. Mater., 42(12), 1145-1150.   DOI
37 Hajmohammad, M.H., Malekia, M. and Kolahchi, R. (2018c), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27.   DOI
38 Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by $SiO_2$ nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440.   DOI
39 Hajmohammad, M.H, Kolahchi, Zarei, M.S. and Maleki, M. (2018a), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508.   DOI
40 Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018b), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory", Aerosp. Sci. Technol., 78, 260-270.   DOI
41 Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotubes reinforced laminated plates/actuator based on sinusoidal-viscopiezoelasticity theories", J. Sandw. Struct. Mater.
42 Hamidi, A., Houari, M.S.A, Hassan, S. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253.   DOI
43 Humbeeck, J.V. (1991), "Cycling effects, fatigue and degradation of shape memory alloys", J. Phys. Colloq., 1(C4), C4-189-C4-197.
44 Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248.   DOI
45 Jiang, X., Hida, M., Takemoto, Y., Sakakibara, A., Yasuda, H. and Mori, H. (1997), "In situ observation of stress-induced martensitic transformation and plastic deformation in TiNi alloy", Mater. Sci. Eng. A., 238(2), 303-308.   DOI
46 Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110.   DOI
47 Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Hassan, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402.   DOI
48 Kolahchi, R. and Bidgoli, A.M.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech.-Engl. Ed., 37(2), 265-274.   DOI
49 Kolahchi, R. Keshtegar, B. and Fakhar, M.H. (2017b), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidalvisco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater.
50 Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlin. Dyn., 90, 479-492.   DOI
51 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017c), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169.   DOI
52 Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186.   DOI
53 Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265.   DOI
54 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017a), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545,   DOI
55 Koomen, T.J. (2015), "General control framework for shape memory alloy based aatuators-a phase transformation approach", M.Sc. Dissertation, Delft University of Technology, Delft, the Netherlands.
56 Liu, Y., Xie, Z. and Humbeeck, J.V. (1999), "Cyclic deformation of NiTi shape memory alloys", Mater. Sci. Eng. A., 273-357, 673-678.
57 Lobo, P.S., Almeida, J. and Guerreiro, L. (2015), "Shape memory alloys behaviour", Rev. Proc. Eng., 114, 776-783.   DOI