• 제목/요약/키워드: phase change effect

Search Result 959, Processing Time 0.036 seconds

Quantum Spin Hall Effect And Topological Insulator

  • Lee, Ilyoung;Yu, Hwan Joo;Lee, Won Tae
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.516-520
    • /
    • 2014
  • Fractional quantum Hall Effect (FQSH) is one of most fundamental issues in condensed matter physics, and the Topological insulator becomes its prominent applications. This article reviews the general frameworks of these development and the physical properties. FQSH states and topological insulators are supposed to be topologically invariant under the minor change of geometrical shape or internal impurities. The phase transitions involved in this phenomena are known not to be explained in terms of symmetry breaking or Landau-Ginsburg theory. The new type of phase transitions related to topological invariants has acquired new name - topological phase transition. The intuitive concepts and the other area having same type of phase transitions are discussed.

  • PDF

Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer

  • Lata, Parveen;Singh, Sukhveer
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.141-150
    • /
    • 2021
  • In the present paper we have investigated the Stoneley wave propagation at the interface of two dissimilar homogeneous nonlocal magneto-thermoelastic media under the effect of hall current applied to multi-dual-phase lag heat transfer. The secular equations of Stoneley waves have been derived by using appropriate boundary conditions. The wave characteristics such as attenuation coefficients, temperature distribution and phase velocity are computed and have been depicted graphically. Effect of nonlocal parameter and hall effect are studied on the attenuation coefficient, phase velocity, temperature distribution change, stress component and displacement component. Also, some particular cases have been discussed from the present study.

Effect of rotation on Stoneley waves in orthotropic magneto-thermoelastic media

  • Parveen, Lata;Himanshi, Himanshi
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.395-403
    • /
    • 2022
  • The present research is concerned with the study of Stoneley wave propagation at the interface of two dissimilar homogeneous orthotropic magneto-thermoelastic solids with fractional order theory of type GN-III with three phase-lags and combined effect of hall current and rotation. With the help of appropriate boundary conditions the secular equations of Stoneley waves are obtained in the form of determinant. The characteristics of wave such as phase velocity, attenuation coefficient and specific loss are computed numerically. The effect of rotation on the Stoneley wave's phase velocity, attenuation coefficient, specific loss, displacement components, stress components and temperature change has been depicted graphically. Some particular cases are also derived in this problem.

Experimental Analysis of the Effect of Phase Change at the Entrance of a Capillary Tube by Sub-cooling Control on Refrigerant-induced Noise (과냉도에 따른 모세관 입구단에서의 냉매 상태 변화가 냉장고 냉매 소음에 미치는 영향의 실험적 분석)

  • Oh, Young-Hoo;Kim, Min-Seong;Han, Hyung-Suk;Kim, Tae-Hoon;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1184-1190
    • /
    • 2012
  • This study is focused on the experimental analysis of the noise induced by phase change of refrigerant at the entrance of capillary tube. The refrigerant is usually two-phase condition when it flowed into the capillary tube. At the entrance of capillary tube, the phase condition of refrigerant is formed by sub-cool control. If it has sufficient sub-cool temperature, all of the vapor refrigerants turned to liquid, which means there is only liquid. Otherwise, the gas is coexisted. Based on this theory, we experiment on each case by changing sub-cool temperature using refrigerant-supplying equipment. The noise level is measured for each case and compared.

Finite Element Analysis of Solidification Process Using the Temperature-Enthalpy Relationship (온도-엔탈피 관계를 이용한 응고과정의 유한요소 해석)

  • Cho, Seong Soo;Ha, Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1213-1222
    • /
    • 1999
  • A finite element method is developed for calculating the temperature and enthalpy distribution and accordingly the solid, liquid and mushy zone in a three-dimensional body subjected to any heat boundary conditions. The method concurrently consider both temperature and enthalpy for consideration of the latent heat effect, differently from other methods of using a special energy balance equation for solving a mushy zone. The developed brick element has eight nodes with one degree of freedom at each node. The numerical method and procedure are verified using the results of one and two dimensional analytic solutions and by other researchers. It is shown that the present method presents a consistent and stable results in either abrupt or ranged phase change problems. Moreover, the numerical results by the present method are hardly effected by the calculation time steps which otherwise are difficult to determine in most phase change problems. Finally, as a three-dimensional application, a T-shaped body of a phase change is presented and the temperature and enthalpy variation along the time are solved.

A Design Study on a Phase Change Heat Exchanger of an Environmental Control System for a POD (POD용 환경조절장치를 위한 상변화열교환기 개념연구)

  • Yoo, Yung-Jun;Min, Seong-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • While a conventional ECS mainly consisted of an air cycle machine and heat exchangers, a new concept of a phase change heat exchanger was added to improve the transient performance of the ECS. As a result, an ECS modeling program including the phase change heat exchanger is newly developed to estimate its effect in various flight conditions such as take-off, maneuver, cruise, and landing. The simulation result regarding a virtual flight profile has confirmed the new ECS fulfilled the requirement by showing the temperature of the cooling air returned from the bay was always kept below $80^{\circ}C$. Through this study, the new ECS concept with PCHE was verified successfully.

A Study on the Heat Release Characteristics of Gel Type Micro Size Latent Heat Storage Material Slurry with Direct Contact Heat Exchange Method (겔 상태의 미세 잠열 축열재 혼합수의 기액직접접촉식 열교환법에 의한 방열 특성)

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.618-623
    • /
    • 2004
  • This paper has dealt with the heat storage characteristics of gel type micro size latent heat storage material slurry. The heat release operation to the gel type micro size latent heat storage material slurry was carried out using hot air bubbles by direct contact heat exchange. This experiment was carried out using phase change material of n-paraffin so the heat release amount is higher than cold water system. The parameters of this experiment were concentration of latent heat phase change material, height of heat release bath and inlet velocity of hot air. The main results obtained are as follows : (1) The effect of concentration of latent heat phase change material dispersed with water is very affective to the direct contact heat exchange between hot air and gel type micro size latent heat storage material slurry. (2) It is clarified that the most effective concentration of latent heat phase change material dispersed with water exists around 20mass% at this type of direct heat exchange model experiment.

Electromagnetic and Thermal Analysis of Phase Change Memory Device with Heater Electrode (발열 전극에 따른 상변화 메모리 소자의 전자장 및 열 해석)

  • Jang, Nak-Won;Mah, Suk-Bum;Kim, Hong-Seung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.410-416
    • /
    • 2007
  • PRAM (Phase change random access memory) is one of the most promising candidates for next generation non-volatile memories. However, the high reset current is one major obstacle to develop a high density PRAM. One way of the reset current reduction is to change the heater electrode material. In this paper, to reduce the reset current for phase transition, we have investigated the effect of heater electrode material parameters using finite element analysis. From the simulation. the reset current of PRAM cell is reduced from 2.0 mA to 0.72 mA as the electrical conductivity of heater is decreased from $1.0{\times}10^6\;(1/{\Omega}{\cdot}m$) to $1.0{\times}10^4\;(1/{\Omega}{\cdot}m$). As the thermal conductivity of heater is decreased, the reset current is slightly reduced. But the reset current of PRAM cell is not changed as the specific heat of heater is changed.

Electrolyte Mechanizm Study of Amorphous Ge-Se Materials for Memory Application (Ge-Se의 스위칭 특성 향상을 위한 Sb-doping에 관한 연구)

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.69-69
    • /
    • 2009
  • In other to progress better crystallization transition and long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10 wt%, 20 wt% and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sh-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sh-doped Ge-Se-Te thin films.

  • PDF

A Study on Cooling Characteristics of Low Temperature Thermal Storage Material with Additives (첨가제를 첨가한 저온축열물질의 냉각특성에 대한 연구)

  • Chung, Nak-Kyu;Kim, Jin-Heung;Chung, Jong-Hun;Kim, Chang-Oh;Kang, Seung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1746-1750
    • /
    • 2004
  • The objective of this study is to investigate the effect of supercooling repression on the clathrate compound by adding additives. For this purpose, phase change temperature and supercooling were measured when additives added to TMA30wt% clathrate for heat source temperature of $-6^{\circ}C$. The experimental results show that the phase change temperature with the chloroform of 0.1wt% is higher by $0.3^{\circ}C$ than TMA30wt% and the supercooling with the surfactant 0.1wt% is reduced by $9.2^{\circ}C$.

  • PDF