• Title/Summary/Keyword: phase arrest

Search Result 367, Processing Time 0.031 seconds

Radiation-induced Apoptosis, Necrosis and G2 Arrest in Fadu and Hep2 Cells

  • Lee Sam-Sun;Kang Beom-Hyun;Choi Hang-Moon;Jeon In-Seong;Heo Min-Suk;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.30 no.4
    • /
    • pp.275-279
    • /
    • 2000
  • Purpose: Radiation damage is produced and viable cell number is reduced. We need to know the type of cell death by the ionizing radiation and the amount and duration of cell cycle arrest. In this study, we want to identified the main cause of the cellular damage in the oral cancer cells and normal keratinocytes with clinically useful radiation dosage. Materials and Methods: Human gingival tissue specimens obtained from healthy volunteers were used for primary culture of the normal human oral keratinocytes (NHOK). Primary NHOK were prepared from separated epithelial tissue and maintained in keratinocyte growth medium containing 0.15 mM calcium and a supplementary growth factor bullet kit. Fadu and Hep-2 cell lines were obtained from KCLB. Cells were irradiated in a /sup 137/Cs γ-irradiator at the dose of 10 Gy. The dose rate was 5.38 Gy/min. The necrotic cell death was examined with Lactate Dehydrogenase (LDH) activity in the culture medium. Every 4 day after irradiation, LDH activities were read and compared control group. Cell cycle phase distribution and preG1-incidence after radiation were analyzed by flow cytometry using Propidium Iodine staining. Cell cycle analysis were carried out with a FAC Star plus flowcytometry (FACS, Becton Dickinson, USA) and DNA histograms were processed with CELLFIT software (Becton Dickinson, USA). Results: LDH activity increased in all of the experimental cells by the times. This pattern could be seen in the non-irradiated cells, and there was no difference between the non-irradiated cells and irradiated cells. We detected an induction of apoptosis after irradiation with a single dose of 10 Gy. The maximal rate of apoptosis ranged from 4.0% to 8.0% 4 days after irradiation. In all experimental cells, we detected G2/M arrest after irradiation with a single dose of 10 Gy. Yet there were differences in the number of G2/M arrested cells. The maximal rate of the G2/M ranges from 60.0% to 80.0% 24h after irradiation. There is no significant changes on the rate of the G0/G1 phase. Conclusion: Radiation sensitivity was not related with necrosis but cell cycle arrest and apoptosis. These data suggested that more arrested cell is correlated with more apoptosis.

  • PDF

Glehnia littoralis Root Extract Induces G0/G1 Phase Cell Cycle Arrest in the MCF-7 Human Breast Cancer Cell Line

  • de la Cruz, Joseph Flores;Vergara, Emil Joseph Sanvictores;Cho, Yura;Hong, Hee Ok;Oyungerel, Baatartsogt;Hwang, Seong Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8113-8117
    • /
    • 2016
  • Glehnia littoralis (GL) is widely used as an oriental medicine for cough, fever, stroke and other disease conditions. However, the anti-cancer properties of GL on MCF-7 human breast cancer cells have not been investigated. In order to elucidate anti-cancer properties and underlying cell death mechanisms, MCF-7cells ($5{\times}10^4/well$) were treated with Glehnia littoralis root extract at 0-400 ug/ml. A hot water extract of GL root inhibited the proliferation of MCF-7 cells in a dose-dependent manner. Analysis of the cell cycle after treatment of MCF-7 cells with increasing concentrations of GL root extract for 24 hours showed significant cell cycle arrest in the G1 phase. RT-PCR and Western blot analysis both revealed that GL root extract significantly increased the expression of p21 and p27 with an accompanying decrease in both CDK4 and cyclin D1. Our reuslts indicated that GL root extract arrested the proliferation of MCF-7 cells in G1 phase through inhibition of CDK4 and cyclin D1 via increased induction of p21 and p27. In summary, the current study showed that GL could serve as a potential source of chemotherapeutic or chemopreventative agents against human breast cancer.

The Combined Effect of Gamma Knife Irradiation and p53 Gene Transfection in Human Malignant Glioma Cell Lines

  • Kim, Jeong-Eun;Paek, Sun-Ha;Kim, Dong-Gyu;Chung, Hyun-Tai;Kim, Young-Yim;Jung, Hee-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.1
    • /
    • pp.48-53
    • /
    • 2005
  • Objective: The purpose of this study is to elucidate in vitro responses to combined gamma knife irradiation and p53 gene transfection on human malignant glioma cell lines. Methods: Two malignant human glioma cell lines, U87MG (p53-wild type) and U373MG (p53-mutant) were transfected with an adenoviral vector containing p53 (MOI of 50) before and after applying 20Gy of gamma irradiation. Various assessments were performed, including, cell viability by MTT assay; apoptosis by annexin assay; and cell cycle by flow cytometry, for the seven groups: mock, p53 only, gamma knife (GK) only, GK after LacZ, LacZ after GK, GK after p53, p53 after GK. Results: Cell survival decreased especially, in the subgroup transfected with p53 after gamma irradiation. Apoptosis tended to increase in p53 transfected U373 MG after gamma irradiation (apoptotic rate, 38.9%). The G2-M phase cell cycle arrest markedly increased by transfecting with p53, 48 hours after gamma knife irradiation in U373 MG (G2-M phase, 90.8%). Conclusion: These results suggest that the in vitro effects of combined gamma knife irradiation and p53 gene transfection is an augmentation of apoptosis and G2-M phase cell cycle arrest, which are more exaggerated in U373 MG with p53 transfection after gamma knife irradiation.

Cell Proliferation and Motility Are Inhibited by G1 Phase Arrest in 15-kDa Selenoprotein-Deficient Chang Liver Cells

  • Bang, Jeyoung;Huh, Jang Hoe;Na, Ji-Woon;Lu, Qiao;Carlson, Bradley A.;Tobe, Ryuta;Tsuji, Petra A.;Gladyshev, Vadim N.;Hatfield, Dolph L.;Lee, Byeong Jae
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.457-465
    • /
    • 2015
  • The 15-kDa selenoprotein (Sep15) is a selenoprotein residing in the lumen of the endoplasmic reticulum (ER) and implicated in quality control of protein folding. Herein, we established an inducible RNAi cell line that targets Sep15 mRNA in Chang liver cells. RNAi-induced Sep15 deficiency led to inhibition of cell proliferation, whereas cell growth was resumed after removal of the knockdown inducer. Sep15-deficient cells were arrested at the G1 phase by upregulating p21 and p27, and these cells were also characterized by ER stress. In addition, Sep15 deficiency led to the relocation of focal adhesions to the periphery of the cell basement and to the decrease of the migratory and invasive ability. All these changes were reversible depending on Sep15 status. Rescuing the knockdown state by expressing a silent mutant Sep15 mRNA that is resistant to siRNA also reversed the phenotypic changes. Our results suggest that SEP15 plays important roles in the regulation of the G1 phase during the cell cycle as well as in cell motility in Chang liver cells, and that this selenoprotein offers a novel functional link between the cell cycle and cell motility.

The ceramide contents of Saccharomyces cerevisiae in batch culture (Saccharomyces cerevisiae 의 회분식 배양에서 세라마이드의 생산)

  • Kim, Se-Kyung;Noh, Yong-Ho;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.449-451
    • /
    • 2008
  • Ceramide has become a widely used ingredient in cosmetic and pharmaceutical industries, however, only a few yeast strains were investigated for the synthesis of ceramide and the concentration was very low. Ceramide is not only a core intermediate of sphingolipids but also an important modulator of many cellular events including apoptosis, cell cycle arrest, senescence, differentiation, and stress responses. In this study S.cerevisiae was grown in a batch culture and the cellular content of ceramide was measured at different growth phases. The ceramide content was highest at stationary phase and 2.01 mg ceramide/g cell was obtained.

Anti-oxidative and Anti-cancer Activities of Ethanol Extract of Litsea populifolia (인체 폐암 세포주 A549에서 Litsea populifolia 추출물의 항산화 및 항암활성 분석)

  • Jin, Soojung;Oh, You Na;Jeong, Hyun Young;Yun, Hee Jung;Park, Jung-ha;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.679-687
    • /
    • 2019
  • Litsea populifolia, a plant species of the Lauraceae family, is widely distributed in the tropical and subtropical areas of Asia. The phylogenetic relationships and botanical characteristics of L. populifolia have been reported; however, its anti-oxidative and anti-cancer activities remain unclear. In this study, we evaluated the anti-oxidative and anti-cancer effects of ethanol extracts of L. populifolia (EELP) together with the molecular mechanism of its anti-cancer activity in human lung adenocarcinoma A549 cells. EELP showed significant anti-oxidative effects with a 50% inhibitory concentration at $11.71{\mu}g/ml$, which was measured by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. EELP exhibited cytotoxic activity and induced cell cycle arrest at the G1 phase in A549 cells in a dose-dependent manner, whereas EELP did not have the cytotoxic effect on the normal human lung cell line IMR90. Treatment with EELP also resulted in a decreased expression of G1/S transition-related molecules-including cyclin-dependent kinase (CDK) 2, CDK6, cyclin D1, and cyclin E-both for the transcription and translation levels. EELP-induced G1 arrest was associated with the phosphorylation of checkpoint kinase 2 (CHK2), p53, cell division cycle 25 homolog A (CDC25A), and the reduction of CDC25A expression in A549 cells. Collectively, these results suggest that EELP may exert an anti-cancer effect by cell cycle arrest at the G1 phase through both p53-dependent and p53-independent (ATM/CHK2/CDC25A/CDK2) pathways in A549 cells.

Sensitization of the Apoptotic Effect of ${\gamma}$-Irradiation in Genistein-pretreated CaSki Cervical Cancer Cells

  • Shin, Jang-In;Shim, Jung-Hyun;Kim, Ki-Hong;Choi, Hee-Sook;Kim, Jae-Wha;Lee, Hee-Gu;Kim, Bo-Yeon;Park, Sue-Nie;Park, Ok-Jin;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.523-531
    • /
    • 2008
  • Radiotherapy is currently applied in the treatment of human cancers. We studied whether genistein would enhance the radiosensitivity and explored its precise molecular mechanism in cervical cancer cells. After co-treatment with genistein and irradiation, the viability, cell cycle analysis, and apoptosis signaling cascades were elucidated in CaSki cells. The viability was decreased by co-treatment with genistein and irradiation compared with irradiation treatment alone. Treatment with only ${\gamma}$-irradiation led to cell cycle arrest at the $G_1$ phase. On the other hand, co-treatment with genistein and ${\gamma}$-irradiation caused a decrease in the $G_1$ phase and a concomitant increase up to 56% in the number of $G_2$ phase. In addition, co-treatment increased the expression of p53 and p21, and Cdc2-tyr-15-p, supporting the occurrence of $G_2/M$ arrest. In general, apoptosis signaling cascades were activated by the following events: release of cytochrome c, upregulation of Bax, down regulation of Bcl-2, and activation of caspase-3 and -8 in the treatment of genistein and irradiation. Apparently, co-treatment downregulated the transcripts of E6*I, E6*II, and E7. Genistein also stimulated irradiation-induced intracellular reactive oxygene, species (ROS) production, and co-treatment-induced apoptosis was inhibited by the antioxidant N-acetylcysteine, suggesting that apoptosis has occurred through the increase in ROS by genistein and ${\gamma}$-irradiation in cervical cancer cells. Gamma-irradiation increased cyclooxygenase-1 (COX-2) expression, whereas the combination with genistein and ${\gamma}$-irradiation almost completely prevented irradiation-induced COX-2 expression and $PGE_2$ production. Co-treatment with genistein and ${\gamma}$-irradiation inhibited proliferation through $G_2/M$ arrest and induced apoptosis via ROS modulation in the CaSki cancer cells.

Growth inhibition and cell cycle phase-specific apoptosis induced by celecoxib in human NSCLC cells in vitro.

  • Choi, Kang-Eun;Kang, Jin-Hyoung;Kuh, Hyo-Jeong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.244.1-244.1
    • /
    • 2002
  • Cyclooxygenase-2 ( COX-2 ) is an inducible enzyme which produces prostanoids by various stimuli. Overexpression of COX-2 in many tumor types indicates its association with tumor progression, which has been a promising target for chemoprevention and chemomodulation. We studied conc- and time-dependency of COX-2 inhibition, growth inhibition, and cell cycle arrest induced by celecoxib, a selective COX-2 inhibitor, in human non-small cell lung cancer (NSCLC) A549 cells. (omitted)

  • PDF

4-O-Methylhonokiol Protects HaCaT Cells from TGF-β1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling

  • Kim, Sang-Cheol;Kang, Jung-Il;Hyun, Jin-Won;Kang, Ji-Hoon;Koh, Young-Sang;Kim, Young-Heui;Kim, Ki-Ho;Ko, Ji-Hee;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.417-426
    • /
    • 2017
  • 4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-${\beta}$ (TGF-${\beta}$) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-${\beta}$ signal pathway has not yet been elucidated. We thus examined the effect of 4-O-methylhonokiol on TGF-${\beta}$-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4-O-methylhonokiol, TGF-${\beta}1$-induced G1/G0 phase arrest and TGF-${\beta}1$-induced p21 expression were decreased. Moreover, 4-O-methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF-${\beta}1$-induced canonical pathway. We observed that ERK phosphorylation by TGF-${\beta}1$ was significantly attenuated by treatment with 4-O-methylhonokiol. 4-O-methylhonokiol inhibited TGF-${\beta}1$-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF-${\beta}1$-induced noncanonical pathway. These results indicate that 4-O-methylhonokiol could inhibit TGF-${\beta}1$-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4-O-methylhonokiol might have protective action on TGF-${\beta}1$-induced cell cycle arrest.

Silibinin Inhibits Cell Growth and Induces Apoptosis through Cell-cycle Arrest in PC-3 Prostate Cancer Cells (인간 전립선 암세포 PC-3 세포에서 Silibinin의 세포주기조절을 통한 세포사멸 유도 효과)

  • Kim, Sang-Hun;Kim, Kwang-Youn;Yu, Sun-Nyoung;Jeon, Hyun-Joo;Jin, Young-Rang;Lee, Chang-Min;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1573-1578
    • /
    • 2011
  • Milk thistle (silybum marianum) is a famous dietary supplement widely used in the United States and Europe. Silbinin is a major biologically active compound of milk thistle and has strong antioxidant and radical scavenger activities. Anticancer activities, as well as chemopreventive effects on various cancer cell lines, including prostate, lung, colon, skin, and bladder, have also been reported in silbinin. In the present study, we investigated the anticancer effects of silibinin and apoptosis through cell cycle arrest on prostate cancer cell PC-3. We performed cell viability by MTT assay and western blotting to confirm cell cycle check point proteins such as cyclin A/D1/E and cyclin-dependent kinase (CDK) 2/4/6. To quantify silibinin-induced apoptotic cell death of PC-3, Annexin V and PI double staining was performed by flow cytometry, by which its cell distribution was determined. As a result, silibinin inhibited the cell growth of PC-3 cells in a time- and dose-dependent manner, and its treatment resulted in cell cycle arrest at the G1 phase. Also the level of cell cycle check point proteins (cyclin, CDK) was decreased by silibinin in a dose-dependent manner. Taken together, we suggest that apoptosis of prostate cancer cell line PC-3 induced by silibinin is associated with cell cycle arrest through decrease of cell cycle check point proteins, caspase-3 activation and poly (ADP-ribose) polymerase (PARP) cleavage.