The Combined Effect of Gamma Knife Irradiation and p53 Gene Transfection in Human Malignant Glioma Cell Lines

  • Kim, Jeong-Eun (Departments of Neurosurgery, Seoul National University College of Medicine) ;
  • Paek, Sun-Ha (Departments of Neurosurgery, Seoul National University College of Medicine) ;
  • Kim, Dong-Gyu (Departments of Neurosurgery, Seoul National University College of Medicine) ;
  • Chung, Hyun-Tai (Departments of Neurosurgery, Seoul National University College of Medicine) ;
  • Kim, Young-Yim (Departments of Clinical Research Institute, Seoul National University College of Medicine) ;
  • Jung, Hee-Won (Departments of Neurosurgery, Seoul National University College of Medicine)
  • Published : 2005.01.31

Abstract

Objective: The purpose of this study is to elucidate in vitro responses to combined gamma knife irradiation and p53 gene transfection on human malignant glioma cell lines. Methods: Two malignant human glioma cell lines, U87MG (p53-wild type) and U373MG (p53-mutant) were transfected with an adenoviral vector containing p53 (MOI of 50) before and after applying 20Gy of gamma irradiation. Various assessments were performed, including, cell viability by MTT assay; apoptosis by annexin assay; and cell cycle by flow cytometry, for the seven groups: mock, p53 only, gamma knife (GK) only, GK after LacZ, LacZ after GK, GK after p53, p53 after GK. Results: Cell survival decreased especially, in the subgroup transfected with p53 after gamma irradiation. Apoptosis tended to increase in p53 transfected U373 MG after gamma irradiation (apoptotic rate, 38.9%). The G2-M phase cell cycle arrest markedly increased by transfecting with p53, 48 hours after gamma knife irradiation in U373 MG (G2-M phase, 90.8%). Conclusion: These results suggest that the in vitro effects of combined gamma knife irradiation and p53 gene transfection is an augmentation of apoptosis and G2-M phase cell cycle arrest, which are more exaggerated in U373 MG with p53 transfection after gamma knife irradiation.

Keywords

References

  1. Badie B, Goh CS, Klaver J, Herweijer H, Boothman DA : Combined radiation and p53 gene therapy of malignant glioma cells. Cancer Gene Ther 6 : 155-162, 1999 https://doi.org/10.1038/sj.cgt.7700009
  2. Black PM : Brain tumor. part 2. N Engl J Med 324 : 1555-1564, 1991 https://doi.org/10.1056/NEJM199105303242205
  3. Chung HT, Kim JE, Kim DG, Jung HW : A stereotactic device for gamma knife irradiation to cell lines. J Korean Neurosurg Soc 35 : 639-642, 2004
  4. Clayman GL, el-Naggar AK, Roth JA, Zhang WW, Goepfert H, Tayler DL, et al : In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma. Cancer Res 55 : 1-6, 1995
  5. El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, et al : WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54 : 1169-1174, 1994
  6. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al : WAF1, a potential mediator of p53 tumor suppression. Cell 75 : 817-825, 1993 https://doi.org/10.1016/0092-8674(93)90500-P
  7. Frankel RH, Bayona W, Koslow M, Newcomb EW : p53 mutations in human malignant gliomas : comparison of loss of heterozygosity with mutation frequency. Cancer Res 52 : 1427-1433, 1992
  8. Gomez-Manzano C, Fueyo J, Kyritsis AP, Steck PA, Roth JA, McDonnell TJ, et al : Adenovirus-mediated transfer of the p53 gene products rapid and generalized death of human glioma cells via apoptosis. Cancer Res 56 : 694-699, 1996
  9. Gotz C, Montenrh M : p53 : DNA damage, DNA repair, and apoptosis. Rev Physiol Biochem Pharmacol 127 : 65-95, 1995 https://doi.org/10.1007/BFb0048265
  10. Haupt Y, Rowan S, Oren M : p53-mediated apoptosis in HeLa cells can be overcome by excess pRB. Oncogene 10 : 1563-1571, 1997
  11. Kim JE, Paek SH, Chung HT, Kim DG, Jung HW : in vitro biological response of malignant glioma cell lines to gamma knife irradiation. J Korean Neurosurg Soc 35 : 599-604, 2004
  12. Kim SK, Wang KC, Cho BK, Chung HT, Kim YY, Lim SY, et al : Interaction between p53 and p16 expressed by adenoviral vectors in human malignant glioma cell lines. J Neurosurg 97 : 143-150, 2002 https://doi.org/10.3171/jns.2002.97.1.0143
  13. Kock H, Harris MP, Anderson SC, Machemer T, Hancock W, Sutjipto S, et al : Adenovirus-mediated p53 gene transfer suppresses growth of human glioblastoma cells in vitro and in vivo. Int J Cancer 67 : 805- 815, 1996 https://doi.org/10.1002/(SICI)1097-0215(19960917)67:6<808::AID-IJC9>3.0.CO;2-V
  14. Levine AJ, Momand J, Finlay CA : The p53 tumour suppressor gene. Nature 351 : 453-456, 1991 https://doi.org/10.1038/351453a0
  15. Li H, Lochmuller H, Yong VW, Karpati G, Nalbantoglu J : Adenovirusmediated wild-type p53 gene transfer and overexpression induces apoptosis of human glioma cells independent of endogenous p53 status. J Neuropathol Exp Neurol 56 : 872-878, 1997 https://doi.org/10.1097/00005072-199708000-00005
  16. Lowe SW, Ruley HE, Jacks T, Housman DE : p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74 : 957-967, 1993 https://doi.org/10.1016/0092-8674(93)90719-7
  17. Mcllwrath AJ, Vasey PA, Ross GM, Brown R : Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. Cancer Res 54 : 3718-3722, 1994
  18. Miyashita T, Reed JC : Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80 : 293-299, 1995 https://doi.org/10.1016/0092-8674(95)90412-3
  19. Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, et al : Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15 : 3032-3040, 1995 https://doi.org/10.1128/MCB.15.6.3032
  20. Polednak AP, Flannery JT : Brain, other central nervous system, and eye cancer. Cancer 75(Suppl 1) : 330-337, 1995 https://doi.org/10.1002/1097-0142(19950101)75:1+<330::AID-CNCR2820751315>3.0.CO;2-5
  21. Putzer BM, Bramson JL, Addison CL, Hitt M, Siegel PM, Muller WJ, et al : Combination therapy with interleukin-2 and wild-type p53 expressed by adenoviral vectors potentiates tumor regression in a murine model of breast cancer. Hum Gene Ther 9 : 707-718, 1998 https://doi.org/10.1089/hum.1998.9.5-707
  22. Raycroft L, Wu HY, Lozano G : Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249 : 1049-1051, 1990 https://doi.org/10.1126/science.2144364
  23. Salcman M : Surgical resection of malignant brain tumors : who benefits? Oncology 32 : 931-941, 1988
  24. Slichenmyer WJ, Nelson WG, Slebos RJ, Kastan MB : Loss of a p53- associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res 53 : 4164-4168, 1993
  25. Smith ML, Chen IT, Zhan Q, O'Connor PM, Fornace AJ Jr : Involvement of the p53 tumor suppressor in repair of UV-type DNA damage. Oncogene 10 : 1053-1059, 1995
  26. von Deimling A, Eibl RH, Ohgaki H, Louis DN, von Ammon K, Petersen I, et al : p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res 52 : 2987-2990, 1992
  27. Wara WM, Bauman GS, Sneed PK : Brain, brain stem and cerebellum, in Perez CA, Brady LW (eds) : Principles and Practice of Radiation Oncology. Philadelphia : Lippincott-Raven, 1998, pp777-828