• Title/Summary/Keyword: phase and frequency detector

Search Result 203, Processing Time 0.026 seconds

Fault Classification in Phase-Locked Loops Using Back Propagation Neural Networks

  • Ramesh, Jayabalan;Vanathi, Ponnusamy Thangapandian;Gunavathi, Kandasamy
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.546-554
    • /
    • 2008
  • Phase-locked loops (PLLs) are among the most important mixed-signal building blocks of modern communication and control circuits, where they are used for frequency and phase synchronization, modulation, and demodulation as well as frequency synthesis. The growing popularity of PLLs has increased the need to test these devices during prototyping and production. The problem of distinguishing and classifying the responses of analog integrated circuits containing catastrophic faults has aroused recent interest. This is because most analog and mixed signal circuits are tested by their functionality, which is both time consuming and expensive. The problem is made more difficult when parametric variations are taken into account. Hence, statistical methods and techniques can be employed to automate fault classification. As a possible solution, we use the back propagation neural network (BPNN) to classify the faults in the designed charge-pump PLL. In order to classify the faults, the BPNN was trained with various training algorithms and their performance for the test structure was analyzed. The proposed method of fault classification gave fault coverage of 99.58%.

  • PDF

Design of Ku-Band Phase Locked Harmonic Oscillator (Ku-Band용 위상 고정 고조파 발진기 설계)

  • Lee Kun-Joon;Kim Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.49-55
    • /
    • 2005
  • In this paper, the phase locked harmonic oscillator(PLHO) using the analog PLL(Phase Locked Loop) is designed and implemented for a wireless LAN system. The harmonic oscillator is consisted of a ring resonator, a varactor diode and a PLL circuit. Because the fundamental fiequency of 8.5 GHz is used as the feedback signal for the PLL and the 2nd harmonic of 17.0 GHz is used as the output, a analog frequency divider for the phase comparison in the PLL system can be omitted. For the simple PLL circuit, the SPD(Sampling Phase Detector) as a phase comparator is used. The output power of the phase locked harmonic oscillator is 2.23 dBm at 17 GHz. The fundamental and 3rd harmonic suppressions are -31.5 dBc and -29.0 dBc, respectively. The measured phase noise characteristics are -87.6 dBc/Hz and -95.4 dBc/Hz at the of offset frequency of 1 kHz and 10 kHz from the carrier, respectively.

Implementation of Multiple Frequency Bioelectrical Impedance Analysis System for Body Composition Analysis (신체 성분 분석을 위한 다 주파수 생체전기 임피던스 분석 시스템 구현)

  • Kim, Seong-Cheol;Jo, Byung-Nam;Lee, Seok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.331-333
    • /
    • 2004
  • In this study, we implement the multiple frequency bioelectrical impedance analysis system for body composition analysis. Overall system consists of : 1) conductivity electrodes to contact with hands and foots, 2) multiple frequency alternating current signal generator for generating 5, 50, 250kHz frequency and 800uA contained alternating current signal, 3) voltage signal detector, 4) phase signal detector, 5) key-pad to input individual information, 6) micro controller for data processing, 7) LCD for processed data to display, 8) system power, We explain the architecture of the system and required theory to implement the system. Finally, experimental results are illustrated to show the performance of the system.

  • PDF

Design of Phase Locked Dielectric Resonator Oscillator with Low Phase Noise for X-band (저위상잡음을 갖는 X-band용 위상고정 유전체 공진 발진기의 설계 및 제작)

  • 류근관
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.34-40
    • /
    • 2004
  • The PLDRO(Phase-Locked Dielectric Resonator Oscillator) with low phase noise is designed for X-band. The phase of VCDRO(Voltage Controlled Dielectric Resonator Oscillator) is locked to that of a high stable reference oscillator by using a SPD(Sampling Phase Detector) to improve phase noise performance in the loop bandwidth. And, the VCDRO is implemented using a high impedance inverter coupled with dielectric resonator to improve the phase noise performance out of the loop bandwidth. This PLDRO exhibits the harmonic rejection characteristics of 51.67㏈c and requires below 1.95W. The phase noise characteristics are performed as -107.17㏈c/Hz at 10KHz offset frequency and -113.0㏈c/Hz at 100KHz offset frequency, respectively, at ambient. And the output power of 13.0㏈m${\pm}$0.33㏈ is measured over the temperature range of $-20 ∼ +70^{\circ}C$ .

A Phase Detection Method For Line Lock (전원동기를 위한 위상검출방법)

  • Kim, Young-Choon;Lee, Sa-Young
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.428-430
    • /
    • 2007
  • Converter that is dc source equipment source's phase by reference control function that detect source's phase because should be done compulsorily use. Source's phase detect method there be method that use source's ac voltage directly by signal, and use methods that voltage detects status by PLL method and so on via point that '0' becomes usually. All above methods to detect phase are using, wrong action of phase detector converter's ailment or converter of burn can. Ths paper compares and examined usable phase detection method in source's frequency fluctuation presuming source's frequency using observer.

  • PDF

Design of Dual PFD with Improved Phase Locking Time (위상동기시간을 개선한 Dual PFD 설계)

  • 이준호;손주호;김선홍;김동용
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.275-278
    • /
    • 1999
  • In this paper, Dual PFD(Phase Frequency Detector) with improved phase locking time is proposed. The proposed PFD consists of positive and negative edge triggered D flip-flop. In order to confirm the characteristics of proposed PFD, HSPICE simulations are performed using a 0.25${\mu}{\textrm}{m}$ CMOS process. As a result of simulations, the proposed PFD has a characteristic of fast phase locking time with dead zone free.

  • PDF

Design and Fabrication of YTO Module for Wideband Frequency Synthesizer (광대역 주파수 합성기용 YTO 모듈 설계 및 제작)

  • Chae, Myeong-Ho;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1280-1287
    • /
    • 2012
  • The 3.2~6.5 GHz wideband YTO(YIG Tuned Oscillator) module is designed, fabricated and measured. To improve the phase noise characteristic of the YTO module, offset PLL(Phase Locked Loop) structure with sampling mixer is applied. This YTO module is composed of sampling mixer, phase detector, loop filter, current driver, and YTO. The phase noise of the fabricated YTO module is measured as -100 dBc/Hz at 10 kHz offset frequency, which approximates the predicted result at the center frequency of 4.5 GHz. This YTO module presents over 10 dB improved phase noise compared to conventional PLL module from operating frequency.

A Design and Fabrication of Low Phase Noise Frequency Synthesizer Using Dual Loop PLL (이중루프 PLL을 이용한 IMT-2000용 저 위상잡음 주파수 합성기의 설계 및 제작)

  • Kim, Kwang-Seon;Choi, Hyun-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2C
    • /
    • pp.191-200
    • /
    • 2002
  • A frequency synthesizer that can be used in IMT-2000 was designed and fabricated using dual loop PLL(Phase Locked Loop) in this paper. For improving phase noise characteristic two loops, reference loop and main loop, were divided. Phase noise was improved by transformed clamp type voltage controled oscillator and optimizing loop bandwidth in reference loop. And voltage controlled oscillator open loop gain in main loop. Fabricated the frequency synthesizer had 1.81GHz center frequency, 160MHz tuning range, 13.5dBm output power and -119.73dBc/Hz low phase noise characteristic.

A CMOS 5.4/3.24-Gbps Dual-Rate CDR with Enhanced Quarter-Rate Linear Phase Detector

  • Yoo, Jae-Wook;Kim, Tae-Ho;Kim, Dong-Kyun;Kang, Jin-Ku
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.752-758
    • /
    • 2011
  • This paper presents a clock and data recovery circuit that supports dual data rates of 5.4 Gbps and 3.24 Gbps for DisplayPort v1.2 sink device. A quarter-rate linear phase detector (PD) is used in order to mitigate high speed circuit design effort. The proposed linear PD results in better jitter performance by increasing up and down pulse widths of the PD and removes dead-zone problem of charge pump circuit. A voltage-controlled oscillator is designed with a 'Mode' switching control for frequency selection. The measured RMS jitter of recovered clock signal is 2.92 ps, and the peak-to-peak jitter is 24.89 ps under $2^{31}-1$ bit-long pseudo-random bit sequence at the bitrate of 5.4 Gbps. The chip area is 1.0 mm${\times}$1.3 mm, and the power consumption is 117 mW from a 1.8 V supply using 0.18 ${\mu}m$ CMOS process.

Fast Single-Phase All Digital Phase-Locked Loop for Grid Synchronization under Distorted Grid Conditions

  • Zhang, Peiyong;Fang, Haixia;Li, Yike;Feng, Chenhui
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1523-1535
    • /
    • 2018
  • High-performance Phase-Locked Loops (PLLs) are critical for grid synchronization in grid-tied power electronic applications. In this paper, a new single-phase All Digital Phase-Locked Loop (ADPLL) is proposed. It features fast transient response and good robustness under distorted grid conditions. It is designed for Field Programmable Gate Array (FPGA) implementation. As a result, a high sampling frequency of 1MHz can be obtained. In addition, a new OSG is adopted to track the power frequency, improve the harmonic rejection and remove the dc offset. Unlike previous methods, it avoids extra feedback loop, which results in an enlarged system bandwidth, enhanced stability and improved dynamic performance. In this case, a new parameter optimization method with consideration of loop delay is employed to achieve a fast dynamic response and guarantee accuracy. The Phase Detector (PD) and Voltage Controlled Oscillator (VCO) are realized by a Coordinate Rotation Digital Computer (CORDIC) algorithm and a Direct Digital Synthesis (DDS) block, respectively. The whole PLL system is finally produced on a FPGA. A theoretical analysis and experiments under various distorted grid conditions, including voltage sag, phase jump, frequency step, harmonics distortion, dc offset and combined disturbances, are also presented to verify the fast dynamic response and good robustness of the ADPLL.