• Title/Summary/Keyword: pharmacokinetic interaction

Search Result 86, Processing Time 0.027 seconds

A Systematic Review on Potential Drug Interactions of Korean Ginseng Based upon Cytochrome P450 and P-Glycoprotein (고려인삼의 Cytochrome P450 및 P-Glycoprotein 매개 약물 상호작용에 미치는 영향)

  • Nam, Ki Yeul;Yang, Byung Wook;Shin, Wang Soo;Park, Jong Dae
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.2
    • /
    • pp.85-102
    • /
    • 2018
  • A drug interaction is a situation in which a substance affects the activity of a drug, synergistically or antagonistically, when both are administered together. It has been shown that orally taken ginsenosides are deglycosylated by intestinal bacteria to give ginsenosides metabolites, which has been considered to be genuine pharmacological constituents and to exhibit drug interactions. Animal experimental results demonstrated that ginsenoside metabolites play an important role in the inhibitory or inductive action of both CYPs (cytochrome p450) and P-gp (p-glycoprotein), thereby can be applied as metabolic modulator to drug interactions. Very few are known on the possibility of drug interaction if taken the recommended dose of ginseng, but it has been found to act as CYPs inductor and P-gp inhibitor in any clinical trial, suggesting the risk that side effects will occur. It has been recently reported that interactions might also exist between ginseng and drugs such as warfarin, phenelzine, imatinib and raltegravir. Moreover, medicinal plants are increasingly being taken in a manner more often associated with prescription medicines. Therefore, considering the extensive applications of ginseng for safety, the aim of this review is to present a comprehensive overview of ginseng and drug interactions based upon pharmacodynamic and pharmacokinetic evidences.

Correlation between the Content and Pharmacokinetics of Ginsenosides from Four Different Preparation of Panax Ginseng C.A. Meyer in Rats

  • Jeon, Ji-Hyeon;Lee, Jaehyeok;Lee, Chul Haeng;Choi, Min-Koo;Song, Im-Sook
    • Mass Spectrometry Letters
    • /
    • v.12 no.1
    • /
    • pp.16-20
    • /
    • 2021
  • We aimed to compare the content of ginsenosides and the pharmacokinetics after the oral administration of four different ginseng products at a dose of 1 g/kg in rats. The four different ginseng products were fresh ginseng extract, red ginseng extract, white ginseng extract, and saponin enriched white ginseng extract prepared from the radix of Panax ginseng C.A. Meyer. The ginsenoside concentrations in the ginseng product and the rat plasma samples were determined using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eight or nine ginsenosides of the 15 tested ginsenosides were detected; however, the content and total ginsenosides varied depending on the preparation method. Moreover, the content of triglycosylated ginsenosides was higher than that of diglycosylated ginsenosides, and deglycosylated ginsenosides were not present in any preparation. After the single oral administrations of four different ginseng products in rats, only four ginsenosides, such as 20(S)-ginsenosides Rb1 (GRb1), GRb2, GRc, and GRd, were detected in the rat plasma samples among the 15 ginsenosides tested. The plasma concentrations of GRb1, GRb2, GRc, and GRd were different depends on the preparation method but pharmacokinetic features of the four ginseng products were similar. In conclusion, a good correlation between the area under the concentration curve and the content of GRb1, GRb2, and GRc, but not GRd, in the ginseng products was identified and it might be the result of their higher content and intestinal biotransformation of the ginseng product.

Changes in the Pharmacokinetics of Rosiglitazone, a CYP2C8 Substrate, When Co-Administered with Amlodipine in Rats

  • Kim, Seon-Hwa;Kim, Kyu-Bong;Um, So-Young;Oh, Yun-Nim;Chung, Myeon-Woo;Oh, Hye-Young;Choi, Ki-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.299-304
    • /
    • 2009
  • Rosiglitazone maleate (RGM) is widely used for improving insulin resistance. RGM is a moderate inhibitor of cytochrome P450 2C8 (CYP2C8) and is also mainly metabolized by CYP2C8. The aim of this study was to determine whether the effect of RGM on CYP2C8 is altered by co-treatment with other drugs, and whether amlodipine camsylate (AC) changes the pharmacokinetics (PK) of RGM. Of the 11 drugs that are likely to be co-administered with RGM in diabetic patients, seven drugs lowered the $IC_{50}$ value of RGM on CYP2C8 by more than 80%. In vitro CYP2C8 inhibitory assays of RGM in combination with drugs of interest showed that the $IC_{50}$ of RGM was decreased by 98.9% by AC. In a pharmacokinetic study, Sprague-Dawley (SD) rats were orally administered 1 mg/kg of RGM following by single or 10-consecutive daily administrations of 1.5 mg/kg/day of AC. No significant changes in the pharmacokinetic parameters of RGM were observed after a single administration of AC, but the AUC and $C_{max}$ values of RGM were significantly reduced by 36% and 31%, respectively, by multiple administrations of AC. In conclusion, RGM was found to be affected by AC by in vitro CYP2C8 inhibition testing, and multiple dosing of AC appreciably changed the pharmacokinetics of RGM. These findings suggest that a drug interaction exists between AC and RGM.

Effects of Baicalin on Oral Pharmacokinetics of Caffeine in Rats

  • Noh, Keumhan;Nepal, Mahesh Raj;Jeong, Ki Sun;Kim, Sun-A;Um, Yeon Ji;Seo, Chae Shin;Kang, Mi Jeong;Park, Pil-Hoon;Kang, Wonku;Jeong, Hye Gwang;Jeong, Tae Cheon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.201-206
    • /
    • 2015
  • Scutellaria baicalensis is one of the most widely used herbal medicines in East Asia. Because baicalein and baicalin are major components of this herb, it is important to understand the effects of these compounds on drug metabolizing enzymes, such as cytochrome P450 (CYP), for evaluating herb-drug interaction. The effects of baicalin and baicalein on activities of ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), benzyloxyresorufin O-debenzylase (BROD), p-nitrophenol hydroxylase and erythromycin N-demethylase were assessed in rat liver microsomes in the present study. In addition, the pharmacokinetics of caffeine and its three metabolites (i.e., paraxanthine, theobromine and theophylline) in baicalin-treated rats were compared with untreated control. As results, EROD, MROD and BROD activities were inhibited by both baicalin and baicalein. However, there were no significant differences in the pharmacokinetic parameters of oral caffeine and its three metabolites between control and baicalin-treated rats. When the plasma concentration of baicalin was determined, the maximum concentration of baicalin was below the estimated $IC_{50}$ values observed in vitro. In conclusion, baicalin had no effects on the pharmacokinetics of caffeine and its metabolites in vivo, following single oral administration in rats.

Drug Interaction between Cimetidine and Diltiazem in Rabbits (가토에서 딜티아젬과 시메티딘과의 약물상호작용)

  • Lee, Jin-Hwan;Choi, Jun-Shik;Moon, Young-Min
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.209-213
    • /
    • 2002
  • Diltiazem inhibits calcium channels and Iεads to vascular smooth muscle rεlaxation and negative inotropic and chronotropic effects in the hεart. Diltiazem is almost completely absorbεd after oral administration, but its extent of absolute oral bioavailability is reduced because of considerable first-pass hepatic metabolism. Diltiazem is able to dilate renal vasculature and can increase the glomerular filtration rate and renal sodium excretion. The purpose of this study was to report the pharmacokinetic changes of diltiazem after oral administration of diltiazem, 20 mg/kg, in rabbits coadministered with cimetidine, 20 mg/kg and pretreated twice per day for 3 days at cimetidine dose of 20 mg/kg. The area under the plasma concentration-time curve (AUC) of diltiazem was significantly higher in rabbits pretreated with cimetidine than that in control rabbits (p<0.01), showing about 149% increased relative bioavailability. The peak plasma concentration $(C_{max})$ and elimination half-life of diltiazem were increased significantly (p<0.05) in rabbits pretreated with cimetidine compared with those in control rabbits. This findings could be due to significant reduction of elimination rate constant by pretreated with cimetidine. The effects of cimetidine on the pharmacokinetics of oral diltiazem were more considerable in rabbits pretreated with cimetidine compared with those in control rabbits. The results suggest that the dosage of diltiazem should be adjusted when the drug would be co-administerεd chronically with cimetidine in a clinical situation.

Contributions of CYP2C9/CYP2C19 Genotypes and Drug Interaction to the Phenytoin Treatment in the Korean Epileptic Patients in the Clinical Setting

  • Lee, Soo-Youn;Lee, Seung-Tae;Kim, Jong-Won
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.448-452
    • /
    • 2007
  • We examined the contribution of CYP2C9 and CYP2C19 genotypes and drug interactions to the phenytoin metabolism among 97 Korean epileptic patients to determine if pharmacogenetic testing could be utilized in routine clinical practice. The CYP2C9 polymorphism is a wellknown major genetic factor responsible for phenytoin metabolism. The CYP219 polymorphism, with a high incidence of variant alleles, has a minor influence on phenytoin treated Koran patients. Using a multiple regression model for evaluation of the CYP2C9 and CYP2C19 genotypes, together with other non-genetic variables, we explained 39.6% of the variance in serum phenytoin levels. Incorporation of genotyping for CYP2C9 and CYP2C19 into a clinical practice may be of some help in the determination of phenytoin dosage. However, because concurrent drug treatment is common in patients taking phenytoin and many environmental factors are likely to play a role in drug metabolism, these factors may overwhelm the relevance of CYP polymorphisms in the clinical setting. Further investigations with an approach to dose assessment that includes comprehensive interpretation of both pharmacogenetic and pharmacokinetic data along with understanding of the mechanism of drug interactions in dosage adjustment is warranted.

Effect of Red Ginseng on cytochrome P450 and P-glycoprotein activities in healthy volunteers

  • Kim, Dal-Sik;Kim, Yunjeong;Jeon, Ji-Young;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.375-381
    • /
    • 2016
  • Background: We evaluated the drug interaction profile of Red Ginseng (RG) with respect to the activities of major cytochrome P450 (CYP) enzymes and the drug transporter P-glycoprotein (P-gp) in healthy Korean volunteers. Methods: This article describes an open-label, crossover study. CYP probe cocktail drugs, caffeine, losartan, dextromethorphan, omeprazole, midazolam, and fexofenadine were administered before and after RG supplementation for 2 wk. Plasma samples were collected, and tolerability was assessed. Pharmacokinetic parameters were calculated, and 90% confidence intervals (CIs) of the geometric mean ratios of the parameters were determined from logarithmically transformed data using analysis of variance after RG administration versus before RG administration. Results: Fourteen healthy male participants were evaluated, none of whom were genetically defined as poor CYP2C9, 2C19, and CYP2D6 metabolizers based on genotyping. Before and after RG administration, the geometric least-square mean metabolic ratio (90% CI) was 0.870 (0.805-0.940) for caffeine to paraxanthine (CYP1A2), 0.871 (0.800-0.947) for losartan (CYP2C9) to EXP3174, 1.027 (0.938-1.123) for omeprazole (CYP2C19) to 5-hydroxyomeprazole, 1.373 (0.864-2.180) for dextromethorphan to dextrorphan (CYP2D6), and 0.824 (0.658-1.032) for midazolam (CYP3A4) to 1-hydroxymidazolam. The geometric mean ratio of the area under the curve of the last sampling time ($AUC_{last}$) for fexofenadine (P-gp) was 0.963 (0.845-1.098). Administration of concentrated RG for 2 wk weakly inhibited CYP2C9 and CYP3A4 and weakly induced CYP2D6. However, no clinically significant drug interactions were observed between RG and CYP and P-gp probe substrates. Conclusion: RG has no relevant potential to cause CYP enzyme- or P-gp-related interactions.

Physiologically-based pharmacokinetic predictions of intestinal BCRP-mediated drug interactions of rosuvastatin in Koreans

  • Bae, Soo Hyeon;Park, Wan-Su;Han, Seunghoon;Park, Gab-jin;Lee, Jongtae;Hong, Taegon;Jeon, Sangil;Yim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.321-329
    • /
    • 2018
  • It was recently reported that the $C_{max}$ and AUC of rosuvastatin increases when it is coadministered with telmisartan and cyclosporine. Rosuvastatin is known to be a substrate of OATP1B1, OATP1B3, NTCP, and BCRP transporters. The aim of this study was to explore the mechanism of the interactions between rosuvastatin and two perpetrators, telmisartan and cyclosporine. Published (cyclosporine) or newly developed (telmisartan) PBPK models were used to this end. The rosuvastatin model in Simcyp (version 15)'s drug library was modified to reflect racial differences in rosuvastatin exposure. In the telmisartan-rosuvastatin case, simulated rosuvastatin $C_{maxI}/C_{max}$ and $AUC_I/AUC$ (with/without telmisartan) ratios were 1.92 and 1.14, respectively, and the $T_{max}$ changed from 3.35 h to 1.40 h with coadministration of telmisartan, which were consistent with the aforementioned report ($C_{maxI}/C_{max}$: 2.01, $AUC_I/AUC$:1.18, $T_{max}:5h{\rightarrow}0.75h$). In the next case of cyclosporine-rosuvastatin, the simulated rosuvastatin $C_{maxI}/C_{max}$ and $AUC_I/AUC$ (with/without cyclosporine) ratios were 3.29 and 1.30, respectively. The decrease in the $CL_{int,BCRP,intestine}$ of rosuvastatin by telmisartan and cyclosporine in the PBPK model was pivotal to reproducing this finding in Simcyp. Our PBPK model demonstrated that the major causes of increase in rosuvastatin exposure are mediated by intestinal BCRP (rosuvastatin-telmisartan interaction) or by both of BCRP and OATP1B1/3 (rosuvastatin-cyclosporine interaction).

In-silico Studies of Boerhavia diffusa (Purnarnava) Phytoconstituents as ACE II Inhibitor: Strategies to Combat COVID-19 and Associated Diseases

  • Rahul Maurya;Thirupataiah Boini;Lakshminarayana Misro;Thulasi Radhakrishnan
    • Natural Product Sciences
    • /
    • v.29 no.2
    • /
    • pp.104-112
    • /
    • 2023
  • COVID-19 caused a catastrophe in human health. People infected with COVID-19 also suffer from various clinical illnesses during and after the infection. The Boerhavia diffusa plant is well known for its antihypertensive activity. ACE-II inhibitors and calcium channel blockers are reported as mechanisms for the antihypertensive activity of B. diffusa phytoconstituents. Various studies have said ACE-II is the virus's binding site to attack host cells. COVID-19 treatment commonly employs a variety of synthetic antiviral and steroidal drugs. As a result, other clinical illnesses, such as hypertension and hyperglycemia, emerge as serious complications. Safe and effective drug delivery is a prime objective of the drug development process. COVID-19 is treated with various herbal treatments; however, they are not widely used due to their low potency. Many herbal plants and formulations are used to treat COVID-19 infection, in which B. diffusa is the most widely used plant. The current study relies on discovering active phytoconstituents with ACE-II inhibitory activity in the B. diffusa plant. As a result, it can be used as a treatment option for patients with COVID-19 and related diseases. Different phytoconstituents of the B. diffusa plant were selected from the reported literature. The activity of phytoconstituents against ACE-II proteins has been studied. Molecular docking and ligand-protein interaction computation tools are used in the in-silico experiment. Physicochemical, drug-likeness, water solubility, lipophilicity, and pharmacokinetic parameters are used to evaluate phytoconstituents. Liriodenine has the best drug-likeness, bioactivity, and binding score characteristics among the selected ligands. The in-silico study aims to find the therapeutic potential of B. diffusa phytoconstituents against ACE-II. Targeting ACE-II also shows an effect against SARS-CoV-2. It can serve as a rationale for designing a drug for patient infected with COVID-19 and associated diseases.

Effect of Clarithromycin on the Pharmacokinetics of Ambroxol in Rats

  • Lee, Chong-Ki;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.3
    • /
    • pp.157-160
    • /
    • 2006
  • This study investigated the effect of clarithromycin on the pharmacokinetics of ambroxol in rats. The pharmacokinetic parameters of ambroxol in rats were determined after the oral administration of ambroxol (12 mg/kg) in the presence or absence of clarithromycin (5 or 10 mg/kg). Compared with the control (given ambroxol alone), coadministration of clarithromycin significantly (p<0.05 at 5 mg/kg; p<0.01 at 10 mg/kg) increased the area under the plasma concentration-time curve (AUC), peak plasma concentrations $(C_{max})$ and absorption rate constant $(K_a)$ of ambroxol. Clarithromycin increased the AUC of ambroxol in a dose dependent manner within the dose range of 5 to 10 mg/kg. The absolute bioavailability (AB%) of ambroxol in the presence of clarithromycin was significantly higher than that of the control (p<0.05 at 5 mg/kg; p<0.01 at 10 mg/kg), and the relative bioavailability (RB%) of ambroxol with clarithromycin was increased by 1.32-to 1.71-fold. However, there were no significant changes in time to reach peak concentration $(T_{max})$ and terminal half-life $(T_{1/2})$ of ambroxol in the presence of clarithromycin. Coadministration of clarithromycin enhanced the bioavailability of ambroxol, which may be due to the inhibition of intestinal and hepatic metabolism of ambroxol by CYP 3A4. Further studies for the potential drug interaction are necessary since ambroxol is often administrated concomitantly with clarithromycin in humans.