Browse > Article
http://dx.doi.org/10.4333/KPS.2006.36.3.157

Effect of Clarithromycin on the Pharmacokinetics of Ambroxol in Rats  

Lee, Chong-Ki (Department of Medical Management, Chodang University Mooan, Korea)
Choi, Jun-Shik (College of Pharmacy Chosun University)
Publication Information
Journal of Pharmaceutical Investigation / v.36, no.3, 2006 , pp. 157-160 More about this Journal
Abstract
This study investigated the effect of clarithromycin on the pharmacokinetics of ambroxol in rats. The pharmacokinetic parameters of ambroxol in rats were determined after the oral administration of ambroxol (12 mg/kg) in the presence or absence of clarithromycin (5 or 10 mg/kg). Compared with the control (given ambroxol alone), coadministration of clarithromycin significantly (p<0.05 at 5 mg/kg; p<0.01 at 10 mg/kg) increased the area under the plasma concentration-time curve (AUC), peak plasma concentrations $(C_{max})$ and absorption rate constant $(K_a)$ of ambroxol. Clarithromycin increased the AUC of ambroxol in a dose dependent manner within the dose range of 5 to 10 mg/kg. The absolute bioavailability (AB%) of ambroxol in the presence of clarithromycin was significantly higher than that of the control (p<0.05 at 5 mg/kg; p<0.01 at 10 mg/kg), and the relative bioavailability (RB%) of ambroxol with clarithromycin was increased by 1.32-to 1.71-fold. However, there were no significant changes in time to reach peak concentration $(T_{max})$ and terminal half-life $(T_{1/2})$ of ambroxol in the presence of clarithromycin. Coadministration of clarithromycin enhanced the bioavailability of ambroxol, which may be due to the inhibition of intestinal and hepatic metabolism of ambroxol by CYP 3A4. Further studies for the potential drug interaction are necessary since ambroxol is often administrated concomitantly with clarithromycin in humans.
Keywords
Ambroxol; Pharmacokinetics; Clarithromycin; Rats;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Ecker, M. Lux and B. Lachmann, The role of alveolar macrophages in surfactant turnover. An experimental study with metabolite VIII of bromhexine, Lung., 161, 213-218 (1983)   DOI   ScienceOn
2 D. Nowak, A Antczak, M. Krol, P. Bialasiewicz and T. Pietras, Antioxidant properties of Ambroxol, Free Radic Bioi Med., 16, 517-522 (1994)   DOI   ScienceOn
3 P. Cerutti and Y. Kapanci, Effects of metabolite VIII of bromexine (Na 872) on type II epithelium of the lung: an experimental and morphological study with reference to surfactant secretion, Respiration., 37, 241-251 (1979)   DOI
4 S. Zhou, S. Yung Chan, B. Cher Goh, E. Chan, W. Duan, M. Huang and H.L. McLeod, Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs, Clin Pharmacokinet., 44, 279-304 (2005)   DOI   ScienceOn
5 A Galetin, H. Burt, L. Gibbons and J.B. Houston, Prediction of time-dependent CYP3A4 drug-drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition, Drug Metab Dispos., 34, 166-175 (2006)   DOI   ScienceOn
6 J.C. Gorski, D.R. Jones, B.D. Haelmer-Daniels, M.A. Hamman, E.M.Jr. O'Mara and S.D. Hall, The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin, Clin Pharmacol Ther., 64, 133-143 (1998)   DOI
7 P. Von Wichert, U. Bavendamm, M. von Teichmann, G. Muller, E. Thalheim, A Wilke and U. Wiegers, Increased incorporation of fatty acids into phospholipids of lungs and livers of rabbits under the influence of bromhexine and ambroxol, Naunyn Schmiedebergs Arch Pharmacol., 297, 269273 (1977)   DOI   ScienceOn
8 S. Nagaoka and Y. Kase, Pharmacological study of ambroxol (NA872), Japanese Pharmacology and Therapeutics., 9, 127-136 (1981)
9 E. Houtmeyers, R Gosselink, G Gayan-Ramirez and M. Decramer, Effects of drugs on mucus clearance, Eur Respir J., 14, 452-467 (1999)
10 J. Gil and U. Thurnheer, Morphometric evaluation of ultrastructural changes in type II alveolar cells ofrat lung produced by bromhexine, Respiration., 28, 438-456 (1971)   DOI
11 H.R. Wirtz, Effect of ambroxol on surfactant secretion and synthesis in isolated type II alveolar cells, Pneumologie., 54, 278-283 (2000)   DOI   ScienceOn
12 A.D. Rodrigues, E.M. Roberts, D.J. Mulford, Y. Yao and D. Ouellet, Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily, Drug Metab Dispos., 25, 623-630 (1997)
13 J.B. Laoag-Femandez, A.M. Fernandez and T. Maruo, Antenatal use of ambroxol for the prevention of infant respiratory distress syndrome, J. Obstet Gynaecol Res., 26, 307-312 (2000)   DOI
14 R.R. Wauer, G. Schmalisch, H. Hammer, S. Buttenberg, H. Weigel and M. Huth, Ambroxol for prevention and treatment of hyaline membrane disease, Eur. Respir J. Suppl., 3, 57S-65S (1989)
15 N. Ishiguro, C. Senda, W, Kishimoto, K. Sakai, Y. Funae and T. Igarashi, Identification of CYP3A4 as the predominant isoform responsible for the metabolism of ambroxol in human liver microsomes, Xenobiotica., 30, 71-80 (2000)   DOI
16 M.H. Botterblom, T.J. Janssen, P. Guelen and T.B. Vree, Rapid and sensitive determination of ambroxol in human plasma and urine by high-performance liquid chromatography, J Chromatogr., 421, 211-215 (1987)   DOI   ScienceOn
17 M.L. Rocci and W.J. Jusko, LAGRAN program for area and moments in phannacokinetic analysis, Comp. Prog. In. Biomed., 16, 203-209 (1983)   DOI   ScienceOn
18 K.A. Rodvold, Clinical pharmacokinetics of clarithromycin, Clin Pharmacokinet., 37, 385-398 (1999)   DOI   ScienceOn
19 L.Z. Benet, C.L. Cummins and C.Y. Wu, Transporter-enzyme interactions: implications for predicting drug-drug interactions from in vitro data, Curro Drug Metab., 4, 393-398 (2003)   DOI   ScienceOn
20 C.L. Cummins, W, Jacobsen and L.Z. Benet, Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP 3A4, J. Pharmacol Exp. Ther., 300, 1036-1045 (2002)   DOI   ScienceOn
21 R.A. Yeates, H. Laufen, T. Zimmermann and T. Schumacher, Phannacokinetic and pharmacodynamic interaction study between midazolam and the macrolide antibiotics, erythromycin, clarithromycin, and the azalide azithromycin, Int. J. Clin Pharmacol. Ther., 35, 577-579 (1997)
22 N. Akiko, N. Masahiro, Y. Hayato, N. Noriko, N. Takuo, M. Hiroyoko, M. Takashi and N. Masahiro, Effect of Clarithromycin on the pharmacokinetics of cabergoline in healthy controls and in patients, J. Pharmacol. Sci., 100, 59-64 (2006)   DOI   ScienceOn
23 B. Yang, D.F. Yao, M. Ohuchi, M. Ide, M. Yano, Y. Okumura and H. Kido, Ambroxol suppresses influenza-virus proliferation in the mouse airway by increasing antiviral factor levels, Eur. Respir J., 19, 952-958 (2002)   DOI   ScienceOn
24 T. Seki, R Matsumura and H. Kohei, A clinico-pharmacological study on trans-(2amino-3,5-dibromobenzylamino) cyclohexanolhydrochloride, Japanese Journal of Clinical Pharmaccology and Therapeutics., 8, 25-31 (1977)   DOI