고려인삼의 Cytochrome P450 및 P-Glycoprotein 매개 약물 상호작용에 미치는 영향

A Systematic Review on Potential Drug Interactions of Korean Ginseng Based upon Cytochrome P450 and P-Glycoprotein

  • 남기열 (충남농업마이스터대학) ;
  • 양병욱 (세명대학교 링크플러스 육성사업단) ;
  • 신왕수 (고려인삼연구(주) 중앙연구소) ;
  • 박종대 (고려인삼연구(주) 중앙연구소)
  • Nam, Ki Yeul (Dept. of medicinal crop/ginseng, Chungnam Agriculture Meister College) ;
  • Yang, Byung Wook (Leaders in INdustry-university Cooperation+ (LINC+), Semyung University) ;
  • Shin, Wang Soo (Central Research Institute, Korean Ginseng Research Co., Ltd.) ;
  • Park, Jong Dae (Central Research Institute, Korean Ginseng Research Co., Ltd.)
  • 투고 : 2018.04.24
  • 심사 : 2018.06.05
  • 발행 : 2018.06.30

초록

A drug interaction is a situation in which a substance affects the activity of a drug, synergistically or antagonistically, when both are administered together. It has been shown that orally taken ginsenosides are deglycosylated by intestinal bacteria to give ginsenosides metabolites, which has been considered to be genuine pharmacological constituents and to exhibit drug interactions. Animal experimental results demonstrated that ginsenoside metabolites play an important role in the inhibitory or inductive action of both CYPs (cytochrome p450) and P-gp (p-glycoprotein), thereby can be applied as metabolic modulator to drug interactions. Very few are known on the possibility of drug interaction if taken the recommended dose of ginseng, but it has been found to act as CYPs inductor and P-gp inhibitor in any clinical trial, suggesting the risk that side effects will occur. It has been recently reported that interactions might also exist between ginseng and drugs such as warfarin, phenelzine, imatinib and raltegravir. Moreover, medicinal plants are increasingly being taken in a manner more often associated with prescription medicines. Therefore, considering the extensive applications of ginseng for safety, the aim of this review is to present a comprehensive overview of ginseng and drug interactions based upon pharmacodynamic and pharmacokinetic evidences.

키워드

참고문헌

  1. de Lima Toccafondo Vieira, M. and Huang, S. M. (2012) Botanical-drug interactions: a scientific perspective. Planta Med. 78: 1400-1415. https://doi.org/10.1055/s-0032-1315145
  2. Qi, L. W., Wang, C. Z., Du, G. J., Zhang, Z. Y., Calway, T. and Yuan, C. S. (2011) Metabolism of ginseng and its interactions with drugs. Curr. Drug Metab. 12: 818-822. https://doi.org/10.2174/138920011797470128
  3. Wanwimolruk, S., Phopin, K. and Prachayasittikul, V. (2014) Cytochrome P450 enzyme mediated herbal drug interactions (Part 2). EXCLI J. 13: 869-896.
  4. Ock, S. M., Hwang, S. S., Lee, J. S., Song, C. H. and Ock, C. M. (2010) Dietary supplement use by South Korean adults: Data from the national complementary and alternative medicine use survey (NCAMUS) in 2006. Nutr. Res. Pract. 4: 69-74. https://doi.org/10.4162/nrp.2010.4.1.69
  5. Werneke, U., Earl, J., Seydel, C., Horn, O., Crichton, P. and Fannon, D. (2004) Potential health risks of complementary alternative medicines in cancer patients. Br. J. Cancer 90: 408-413. https://doi.org/10.1038/sj.bjc.6601560
  6. Robertson, S. M., Davey, R. T., Voell, J., Formentini, E., Alfaro, R. M. and Penzak, S. R. (2008) Effect of Ginkgo biloba extract on lopinavir, midazolam and fexofenadine pharmacokinetics in healthy subjects. Curr. Med. Res. Opin. 24: 591-599. https://doi.org/10.1185/030079908X260871
  7. Penzak, S. R., Robertson, S. M., Hunt, J. D., Chairez, C., Malati, C. Y., Alfaro, R. M., Stevenson, J. M. and Kovacs, J. A. (2010) Echinacea purpurea significantly induces cytochrome P450 3A activity but does not alter lopinavir-ritonavir exposure in healthy subjects. Pharmacotherapy 30: 797-805. https://doi.org/10.1592/phco.30.8.797
  8. Izzo, A. A. and Ernst, E. (2009) Interactions between herbal medicines and prescribed drugs: an updated systematic review. Drugs 69: 1777-1798. https://doi.org/10.2165/11317010-000000000-00000
  9. Borrelli, F. and Izzo, A. A. (2009) Herb-drug interactions with St John's wort (Hypericum perforatum): an update on clinical observations. Aaps J. 11: 710-727. https://doi.org/10.1208/s12248-009-9146-8
  10. Beijnen, J. H. and Schellens, J. H. (2004) Drug interactions in oncology. Lancet Oncol. 5: 489-496. https://doi.org/10.1016/S1470-2045(04)01528-1
  11. Mallet, L., Spinewine, A. and Huang, A. (2007) The challenge of managing drug interactions in elderly people. Lancet 370: 185-191. https://doi.org/10.1016/S0140-6736(07)61092-7
  12. Yang L., Liu Y, Liu C. X. (2006) Metabolism and pharmacokinetics of ginsenosides. Asian Journal of Pharmacodynamics and Pharmacokinetics 6: 103-120.
  13. Delaforge, M. (1998) Importance of metabolism in pharmacological studies: possible in vitro predictability. Nuclear Medicine and Biology 25: 705-709. https://doi.org/10.1016/S0969-8051(98)00063-8
  14. Nebert, D. W. and Russell, D. W. (2002) Clinical importance of the cytochromes P450. Lancet 360: 1155-1162. https://doi.org/10.1016/S0140-6736(02)11203-7
  15. Kaminsky, L. S. and Zhang, Q. Y. (2003) The small intestine as a xenobiotic-metabolizing organ. Drug Metabolism and Disposition: The biological fate of chemicals. 31: 1520-1525. https://doi.org/10.1124/dmd.31.12.1520
  16. Lin, J. H. (2006) CYP induction-mediated drug interactions: in vitro assessment and clinical implications. Pharmaceutical research 23: 1089-1116. https://doi.org/10.1007/s11095-006-0277-7
  17. Guengerich, F. P. (1999) Cytochrome P-450 3A4: regulation and role in drug metabolism. Annual Review of Pharmacology and Toxicology 39: 1-17. https://doi.org/10.1146/annurev.pharmtox.39.1.1
  18. Cho, H. J. and Yoon, I. S. (2015) Pharmacokinetic interactions of herbs with cytochrome p450 and p-glycoprotein. Evid. Based Complement Alternat. Med. 2015: 736431.
  19. Chang, T. K., Chen, J. and Benetton, S. A. (2002) In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metabolism and Disposition 30: 378-384. https://doi.org/10.1124/dmd.30.4.378
  20. Yu, C. T., Chen, J., Teng, X. W., Tong, V. and Chang, T. K. (2005) Lack of evidence for induction of CYP2B1, CYP3A23, and CYP1A2 gene expression by Panax ginseng and Panax quinquefolius extracts in adult rats and primary cultures of rat hepatocytes. Drug Metabolism and Disposition 33: 19-22.
  21. Zheng, Y. F., Bae, S. H., Choi, E. J., Park, J. B., Kim, S. O., Jang, M. J., Park, G. H., Shin, W. G., Oh, E. and Bae, S. K. (2014) Evaluation of the in vitro/in vivo drug interaction potential of BST204, a purified dry extract of ginseng, and its four bioactive ginsenosides through cytochrome P450 inhibition/induction and UDP-glucuronosyltransferase inhibition. Food and Chemical Toxicology 68: 117-127. https://doi.org/10.1016/j.fct.2014.03.004
  22. Kawase, A., Yamada, A., Gamou, Y., Tahara, C., Takeshita, F., Murata, K., Matsuda, H., Samukawa, K. and Iwaki, M. (2014) Effects of ginsenosides on the expression of cytochrome P450s and transporters involved in cholesterol metabolism. J. Nat. Med. 68: 395-401. https://doi.org/10.1007/s11418-013-0791-y
  23. Kawase, A., Yamada, A., Gamou, Y., Tahara, C., Takeshita, F., Murata, K., Matsuda, H., Samukawa, K. and Iwaki, M. (2013) Increased effects of ginsenosides on the expression of cholesterol 7alpha-hydroxylase but not the bile salt export pump are involved in cholesterol metabolism. J. Nat. Med. 67: 545-553. https://doi.org/10.1007/s11418-012-0713-4
  24. Henderson, G. L., Harkey, M. R., Gershwin, M. E., Hackman, R. M., Stern, J. S. and Stresser, D. M. (1999) Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci. 65: PL209-214.
  25. He, N. and Edeki, T. (2004) The inhibitory effects of herbal components on CYP2C9 and CYP3A4 catalytic activities in human liver microsomes. Am. J. Ther. 11: 206-212. https://doi.org/10.1097/00045391-200405000-00009
  26. Lewis, D. F., Ioannides, C., Parke, D. V. and Schulte-Hermann, R. (2000) Quantitative structure-activity relationships in a series of endogenous and synthetic steroids exhibiting induction of CYP3A activity and hepatomegaly associated with increased DNA synthesis. The Journal of Steroid Biochemistry and Molecular Biology 74: 179-185. https://doi.org/10.1016/S0960-0760(00)00121-7
  27. Smith, D. A. and Jones, B. C. (1992) Speculations on the substrate structure-activity relationship (SSAR) of cytochrome P450 enzymes. Biochemical Parmacology 44: 2089-2098. https://doi.org/10.1016/0006-2952(92)90333-E
  28. Liu, Y., Ma, H., Zhang, J. W., Deng, M. C. and Yang, L. (2006) Influence of ginsenoside Rh1 and F1 on human cytochrome p450 enzymes. Planta Med. 72: 126-131. https://doi.org/10.1055/s-2005-873197
  29. Liu, Y., Zhang, J. W., Li, W., Ma, H., Sun, J., Deng, M. C. and Yang, L. (2006) Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes. Toxicological Sciences 91: 356-364. https://doi.org/10.1093/toxsci/kfj164
  30. Liu, Y., Li, W., Li, P., Deng, M. C., Yang, S. L. and Yang, L. (2004) The inhibitory effect of intestinal bacterial metabolite of ginsenosides on CYP3A activity. Biol. Pharm. Bull. 27: 1555-1560. https://doi.org/10.1248/bpb.27.1555
  31. Xiao, J., Chen, D., Lin, X. X., Peng, S. F., Xiao, M. F., Huang, W. H., Wang, Y. C., Peng, J. B., Zhang, W. and Ouyang, D. S. (2016) Screening of drug metabolizing enzymes for the ginsenoside compound K in vitro: An efficient anticancer substance originating from Panax ginseng. PLoS One 11: e0147183. https://doi.org/10.1371/journal.pone.0147183
  32. Chiu, N. T., Tomlinson Guns, E. S., Adomat, H., Jia, W. and Deb, S. (2014) Identification of human cytochrome P450 enzymes involved in the hepatic and intestinal biotransformation of 20(S)-protopanaxadiol. Biopharmaceutics and Drug Disposition 35: 104-118. https://doi.org/10.1002/bdd.1873
  33. Deb, S., Chin, M. Y., Adomat, H. and Guns, E. S. (2014) Ginsenoside-mediated blockade of 1 alpha, 25-dihydroxyvitamin D3 inactivation in human liver and intestine in vitro. The Journal of Steroid Biochemistry and Molecular Biology. 141: 94-103. https://doi.org/10.1016/j.jsbmb.2014.01.007
  34. Hao, M., Zhao, Y., Chen, P., Huang, H., Liu, H., Jiang, H., Zhang, R. and Wang, H. (2008) Structure-activity relationship and substrate-dependent phenomena in effects of ginsenosides on activities of drug-metabolizing P450 enzymes. PLoS One 3: e2697. https://doi.org/10.1371/journal.pone.0002697
  35. Hao, M., Ba, Q., Yin, J., Li, J., Zhao, Y. and Wang, H. (2011) Deglycosylated ginsenosides are more potent inducers of CYP1A1, CYP1A2 and CYP3A4 expression in HepG2 cells than glycosylated ginsenosides. Drug Metabolism and Pharmacokinetics 26: 201-205. https://doi.org/10.2133/dmpk.DMPK-10-NT-056
  36. Fang, Z. Z., Cao, Y. F., Hu, C. M., Hong, M., Sun, X. Y., Ge, G. B., Liu, Y., Zhang, Y. Y., Yang, L. and Sun, H. Z. (2013) Structure-inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs). Toxicol. Appl. Pharmacol. 267: 149-154. https://doi.org/10.1016/j.taap.2012.12.019
  37. He, Y. J., Fang, Z. Z., Ge, G. B., Jiang, P., Jin, H. Z., Zhang, W. D. and Yang, L. (2013) The inhibitory effect of 20(S)-protopanaxatriol (ppt) towards UGT1A1 and UGT2B7. Phytother. Res. 27: 628-632. https://doi.org/10.1002/ptr.4755
  38. Liang, Y., Zhou, Y., Zhang, J., Rao, T., Zhou, L., Xing, R., Wang, Q., Fu, H., Hao, K. and Xie, L. (2014) Pharmacokinetic compatibility of ginsenosides and Schisandra lignans in Shengmai-san: from the perspective of p-glycoprotein. PLoS One 9: e98717. https://doi.org/10.1371/journal.pone.0098717
  39. Molnar, J., Szabo, D., Pusztai, R., Mucsi, I., Berek, L., Ocsovszki, I., Kawata, E. and Shoyama, Y. (2000) Membrane associated antitumor effects of crocine-, ginsenoside- and cannabinoid derivates. Anticancer Res. 20: 861-867.
  40. Kim, S. W., Kwon, H. Y., Chi, D. W., Shim, J. H., Park, J. D., Lee, Y. H., Pyo, S. and Rhee, D. K. (2003) Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg(3). Biochemical Pharmacology 65: 75-82. https://doi.org/10.1016/S0006-2952(02)01446-6
  41. Kwon, H. Y., Kim, E. H., Kim, S. W., Kim, S. N., Park, J. D. and Rhee, D. K. (2008) Selective toxicity of ginsenoside Rg3 on multidrug resistant cells by membrane fluidity modulation. Arch. Pharm. Res. 31: 171-177. https://doi.org/10.1007/s12272-001-1137-y
  42. Yang, L. Q., Wang, B., Gan, H., Fu, S. T., Zhu, X. X., Wu, Z. N., Zhan, D. W., Gu, R. L., Dou, G. F. and Meng, Z. Y. (2012) Enhanced oral bioavailability and anti-tumour effect of paclitaxel by 20(s)-ginsenoside Rg3 in vivo. Biopharmaceutics and Drug Disposition 33: 425-436. https://doi.org/10.1002/bdd.1806
  43. Zhang, J., Zhou, F., Wu, X., Gu, Y., Ai, H., Zheng, Y., Li, Y., Zhang, X., Hao, G. and Sun, J. (2010) 20(S)-ginsenoside Rh2 noncompetitively inhibits P-glycoprotein in vitro and in vivo: a case for herb-drug interactions. Drug Metabolism and Disposition 38: 2179-2187. https://doi.org/10.1124/dmd.110.034793
  44. Zhang, J., Zhou, F., Niu, F., Lu, M., Wu, X., Sun, J. and Wang, G. (2012) Stereoselective regulations of P-glycoprotein by ginsenoside Rh2 epimers and the potential mechanisms from the view of pharmacokinetics. PLoS One 7: e35768. https://doi.org/10.1371/journal.pone.0035768
  45. Kitagawa, S., Takahashi, T., Nabekura, T., Tachikawa, E. and Hasegawa, H. (2007) Inhibitory effects of ginsenosides and their hydrolyzed metabolites on daunorubicin transport in KB-C2 cells. Biol. Pharm. Bull. 30: 1979-1981. https://doi.org/10.1248/bpb.30.1979
  46. Li, N., Wang, D., Ge, G., Wang, X., Liu, Y. and Yang, L. (2014) Ginsenoside metabolites inhibit P-glycoprotein in vitro and in situ using three absorption models. Planta Med. 80: 290-296. https://doi.org/10.1055/s-0033-1360334
  47. Gu, Y., Wang, G. J., Sun, J. G., Jia, Y. W., Wang, W., Xu, M. J., Lv, T., Zheng, Y. T. and Sai, Y. (2009) Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food and Chemical Toxicology 47: 2257-2268. https://doi.org/10.1016/j.fct.2009.06.013
  48. Lee, P. S., Song, T. W., Sung, J. H., Moon, D. C., Song, S. and Chung, Y. B. (2006) Pharmacokinetic characteristics and hepatic distribution of IH-901, a novel intestinal metabolite of ginseng saponin, in rats. Planta Med. 72: 204-210. https://doi.org/10.1055/s-2005-916201
  49. Yang, Z., Gao, S., Wang, J., Yin, T., Teng, Y., Wu, B., You, M., Jiang, Z. and Hu, M. (2011) Enhancement of oral bioavailability of 20(S)-ginsenoside Rh2 through improved understanding of its absorption and efflux mechanisms. Drug Metabolism and Disposition 39: 1866-1872. https://doi.org/10.1124/dmd.111.040006
  50. Yang, Z., Wang, J. R., Niu, T., Gao, S., Yin, T., You, M., Jiang, Z. H. and Hu, M. (2012) Inhibition of P-glycoprotein leads to improved oral bioavailability of compound K, an anticancer metabolite of red ginseng extract produced by gut microflora. Drug Metabolism and Disposition 40: 1538-1544. https://doi.org/10.1124/dmd.111.044008
  51. Zhang, R., Jie, J., Zhou, Y., Cao, Z. and Li, W. (2009) Long-term effects of Panax ginseng on disposition of fexofenadine in rats in vivo. Am. J. Chin. Med. 37: 657-667. https://doi.org/10.1142/S0192415X09007144
  52. Choi, C. H., Kang, G. and Min, Y. D. (2003) Reversal of P-glycoprotein-mediated multidrug resistance by protopanaxatriol ginsenosides from Korean red ginseng. Planta Med. 69: 235-240. https://doi.org/10.1055/s-2003-38483
  53. Jin, J., Shahi, S., Kang, H. K., van Veen, H. W. and Fan, T. P. (2006) Metabolites of ginsenosides as novel BCRP inhibitors. Biochemical and Biophysical Research Communications 345: 1308-1314. https://doi.org/10.1016/j.bbrc.2006.04.152
  54. Zhang, J., Zhou, F., Wu, X., Zhang, X., Chen, Y., Zha, B. S., Niu, F., Lu, M., Hao, G. and Sun, Y. (2012) Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20(S)-ginsenoside Rh2 in MCF-7/Adr cells. Br. J. Pharmacol. 165: 120-134. https://doi.org/10.1111/j.1476-5381.2011.01505.x
  55. Gurley, B. J., Gardner, S. F., Hubbard, M. A., Williams, D. K., Gentry, W. B., Cui, Y. and Ang, C. Y. (2002) Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clinical Pharmacology and Therapeutics 72: 276-287. https://doi.org/10.1067/mcp.2002.126913
  56. Gurley, B. J., Gardner, S. F., Hubbard, M. A., Williams, D. K., Gentry, W. B., Cui, Y. and Ang, C. Y. (2005) Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly: St John's wort, garlic oil, Panax ginseng and Ginkgo biloba. Drugs Aging 22: 525-539. https://doi.org/10.2165/00002512-200522060-00006
  57. Anderson, G. D., Rosito, G., Mohustsy, M. A. and Elmer, G. W. (2003) Drug interaction potential of soy extract and Panax ginseng. J. Clin. Pharmacol. 43: 643-648. https://doi.org/10.1177/0091270003253636
  58. Malati, C. Y., Robertson, S. M., Hunt, J. D., Chairez, C., Alfaro, R. M., Kovacs, J. A. and Penzak, S. R. (2012) Influence of Panax ginseng on cytochrome P450 (CYP) 3A and P-glycoprotein (P-gp) activity in healthy participants. J. Clin. Pharmacol. 52: 932-939. https://doi.org/10.1177/0091270011407194
  59. Kim, D. S., Kim, Y., Jeon, J. Y. and Kim, M. G. (2016) Effect of Red Ginseng on cytochrome P450 and P-glycoprotein activities in healthy volunteers. J. Ginseng Res. 40: 375-381. https://doi.org/10.1016/j.jgr.2015.11.005
  60. Kim, M. G., Kim, Y., Jeon, J. Y. and Kim, D. S. (2016) Effect of fermented red ginseng on cytochrome P450 and P-glycoprotein activity in healthy subjects, as evaluated using the cocktail approach. Br. J. Clin. Pharmacol. 82: 1580-1590. https://doi.org/10.1111/bcp.13080
  61. Cho, Y. K., Jung, Y., Sung, H. and Joo, C. H. (2011) Frequent genetic defects in the HIV-1 5' LTR/gag gene in hemophiliacs treated with Korean Red Ginseng: Decreased detection of genetic defects by highly active antiretroviral therapy. J. Ginseng Res. 35: 413-420. https://doi.org/10.5142/jgr.2011.35.4.413
  62. Lee, C. G., Gottesman, M. M., Cardarelli, C. O., Ramachandra, M., Jeang, K. T., Ambudkar, S. V., Pastan, I. and Dey, S. (1998) HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 37: 3594-3601. https://doi.org/10.1021/bi972709x
  63. Drewe, J., Gutmann, H., Fricker, G., Torok, M., Beglinger, C. and Huwyler, J. (1999) HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochemical Pharmacology 57: 1147-1152. https://doi.org/10.1016/S0006-2952(99)00026-X
  64. Kumar, G. N., Rodrigues, A. D., Buko, A. M. and Denissen, J. F. (1996) Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J. Pharmacol. Exp. Ther. 277: 423-431.
  65. Eagling, V. A., Back, D. J. and Barry, M. G. (1997) Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br. J. Clin. Pharmacol. 44: 190-194.
  66. Shi, J., Cao, B., Zha, W. B., Wu, X. L., Liu, L. S., Xiao, W. J., Gu, R. R., Sun, R. B., Yu, X. Y. and Zheng, T. (2013) Pharmacokinetic interactions between 20(S)-ginsenoside Rh2 and the HIV protease inhibitor ritonavir in vitro and in vivo. Acta Pharmacologica Sinica 34: 1349-1358. https://doi.org/10.1038/aps.2013.69
  67. Patel, J., Buddha, B., Dey, S., Pal, D. and Mitra, A. K. (2004) In vitro interaction of the HIV protease inhibitor ritonavir with herbal constituents: changes in P-gp and CYP3A4 activity. Am. J. Ther. 11: 262-277. https://doi.org/10.1097/01.mjt.0000101827.94820.22
  68. Lee, L. S., Wise, S. D., Chan, C., Parsons, T. L., Flexner, C. and Lietman, P. S. (2008) Possible differential induction of phase 2 enzyme and antioxidant pathways by American ginseng, Panax quinquefolius. J. Clin. Pharmacol. 48: 599-609. https://doi.org/10.1177/0091270008314252
  69. Andrade, A. S., Hendrix, C., Parsons, T. L., Caballero, B., Yuan, C. S., Flexner, C. W., Dobs, A. S. and Brown, T. T. (2008) Pharmacokinetic and metabolic effects of American ginseng (Panax quinquefolius) in healthy volunteers receiving the HIV protease inhibitor indinavir. BMC Complement Altern. Med. 8: 50. https://doi.org/10.1186/1472-6882-8-50
  70. Mateo-Carrasco, H., Galvez-Contreras, M. C., Fernandez-Gines, F. D. and Nguyen, T. V. (2012) Elevated liver enzymes resulting from an interaction between Raltegravir and Panax ginseng: a case report and brief review. Drug Metabolism and Drug Interactions 27: 171-175.
  71. Shader, R. I. and Greenblatt, D. J. (1988) Bees, ginseng and MAOIs revisited. J. Clin. Psychopharmacol. 8: 235.
  72. Shader, R. I. and Greenblatt, D. J. (1985) Phenelzine and the dream machine-ramblings and reflections. J. Clin. Psychopharmacol. 5: 65. https://doi.org/10.1097/00004714-198504000-00001
  73. Jones, B. D. and Runikis, A. M. (1987) Interaction of ginseng with phenelzine. J. Clin. Psychopharmacol. 7: 201-202. https://doi.org/10.1097/00004714-198706000-00030
  74. Harbord, R. M., Egger, M. and Sterne, J. A. (2006) A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat. Med. 25: 3443-3457. https://doi.org/10.1002/sim.2380
  75. Molassiotis, A., Potrata, B. and Cheng, K. K. (2009) A systematic review of the effectiveness of Chinese herbal medication in symptom management and improvement of quality of life in adult cancer patients. Complement Ther. Med. 17: 92-120. https://doi.org/10.1016/j.ctim.2008.11.002
  76. Ernst, E. (2010) Panax ginseng: an overview of the clinical evidence. Journal of Ginseng Research 34: 259-263. https://doi.org/10.5142/jgr.2010.34.4.259
  77. Bilgi, N., Bell, K., Ananthakrishnan, A. N. and Atallah, E. (2010) Imatinib and Panax ginseng: a potential interaction resulting in liver toxicity. Ann. Pharmacother. 44: 926-928. https://doi.org/10.1345/aph.1M715
  78. Collado-Borrell, R., Escudero-Vilaplana, V., Romero-Jimenez, R., Iglesias-Peinado, I., Herranz-Alonso, A. and Sanjurjo-Saez, M. (2016) Oral antineoplastic agent interactions with medicinal plants and food: an issue to take into account. Journal of Cancer Research and Clinical Oncology 142: 2319-2330. https://doi.org/10.1007/s00432-016-2190-8
  79. Lee, Y., Jin, Y., Lim, W., Ji, S., Choi, S., Jang, S. and Lee, S. (2003) A ginsenoside-Rh1, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. The Journal of Steroid Biochemistry and Molecular Biology 84: 463-468. https://doi.org/10.1016/S0960-0760(03)00067-0
  80. Park, J., Song, H., Kim, S. K., Lee, M. S., Rhee, D. K. and Lee, Y. (2017) Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors. J. Ginseng Res. 41: 215-221. https://doi.org/10.1016/j.jgr.2016.08.005
  81. Mohamadi, A., Aghaei, M. and Panjehpour, M. (2018) Estrogen stimulates adenosine receptor expression subtypes in human breast cancer MCF-7 cell line. Res. Pharm. Sci. 13: 57-64. https://doi.org/10.4103/1735-5362.220968
  82. King, M. L., Adler, S. R. and Murphy, L. L. (2006) Extraction-dependent effects of American ginseng (Panax quinquefolium) on human breast cancer cell proliferation and estrogen receptor activation. Integr. Cancer Ther. 5: 236-243. https://doi.org/10.1177/1534735406291341
  83. Hsu, W. L., Tsai, Y. T., Wu, C. T. and Lai, J. N. (2015) The Prescription pattern of chinese herbal products containing ginseng among tamoxifen-treated female breast cancer survivors in Taiwan: A Population-based study. Evid. Based Complement Alternat. Med. 2015: 385204.
  84. Cui, Y., Shu, X. O., Gao, Y. T., Cai, H., Tao, M. H. and Zheng, W. (2006) Association of ginseng use with survival and quality of life among breast cancer patients. American Journal of Epidemiology 163: 645-653. https://doi.org/10.1093/aje/kwj087
  85. Perini, J. A., Struchiner, C. J., Silva-Assuncao, E., Santana, I. S., Rangel, F., Ojopi, E. B., Dias-Neto, E. and Suarez-Kurtz, G. (2008) Pharmacogenetics of warfarin: development of a dosing algorithm for brazilian patients. Clinical Pharmacology and Therapeutics 84: 722-728. https://doi.org/10.1038/clpt.2008.166
  86. Janetzky, K. and Morreale, A. P. (1997) Probable interaction between warfarin and ginseng. American Journal of Health-System Pharmacy 54: 692-693.
  87. Jiang, X., Williams, K. M., Liauw, W. S., Ammit, A. J., Roufogalis, B. D., Duke, C. C., Day, R. O. and McLachlan, A. J. (2004) Effect of St John's wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br. J. Clin. Pharmacol. 57: 592-599. https://doi.org/10.1111/j.1365-2125.2003.02051.x
  88. Jiang, X., Blair, E. Y. and McLachlan, A. J. (2006) Investigation of the effects of herbal medicines on warfarin response in healthy subjects: a population pharmacokinetic-pharmacodynamic modeling approach. J. Clin. Pharmacol. 46: 1370-1378. https://doi.org/10.1177/0091270006292124
  89. Yuan, C. S., Wei, G., Dey, L., Karrison, T., Nahlik, L., Maleckar, S., Kasza, K., Ang-Lee, M. and Moss, J. (2004) Brief communication: American ginseng reduces warfarin's effect in healthy patients: a randomized, controlled Trial. Annals of Internal Medicine 141: 23-27. https://doi.org/10.7326/0003-4819-141-1-200407060-00011
  90. Lee, Y. H., Lee, B. K., Choi, Y. J., Yoon, I. K., Chang, B. C. and Gwak, H. S. (2010) Interaction between warfarin and Korean red ginseng in patients with cardiac valve replacement. International Journal of Cardiology. 145: 275-276. https://doi.org/10.1016/j.ijcard.2009.09.553
  91. Lee, S. H., Ahn, Y. M., Ahn, S. Y., Doo, H. K. and Lee, B. C. (2008) Interaction between warfarin and Panax ginseng in ischemic stroke patients. Journal of Aternative and Complementary Medicine 14: 715-721. https://doi.org/10.1089/acm.2007.0799
  92. Qi, L. W., Wang, C. Z. and Yuan, C. S. (2011) Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 72: 689-699. https://doi.org/10.1016/j.phytochem.2011.02.012
  93. Zhu, M., Chan, K. W., Ng, L.S., Chang, Q., Chang, S. and Li, R. C. (1999) Possible influences of ginseng on the pharmacokinetics and pharmacodynamics of warfarin in rats. J. Pharm. Pharmacol. 51: 175-180. https://doi.org/10.1211/0022357991772105
  94. Ramanathan, M. R. and Penzak, S. R. (2017) Pharmacokinetic Drug Interactions with Panax ginseng. Eur. J. Drug Metab. Pharmacokinet. 42: 545-557. https://doi.org/10.1007/s13318-016-0387-5
  95. Kimura, Y., Okuda, H. and Arichi, S. (1988) Effects of various ginseng saponins on 5-hydroxytryptamine release and aggregation in human platelets. J. Pharm. Pharmacol. 40: 838-843. https://doi.org/10.1111/j.2042-7158.1988.tb06285.x
  96. Kuo, S. C., Teng, C. M., Lee, J. C., Ko, F. N., Chen, S. C. and Wu, T. S. (1990) Antiplatelet components in Panax ginseng. Planta Med. 56: 164-167. https://doi.org/10.1055/s-2006-960916
  97. Park, H. J., Lee, J. H., Song, Y. B. and Park, K. H. (1996) Effects of dietary supplementation of lipophilic fraction from Panax ginseng on cGMP and cAMP in rat platelets and on blood coagulation. Biol. Pharm. Bull. 19: 1434-1439. https://doi.org/10.1248/bpb.19.1434
  98. Yu, J. Y., Jin, Y. R., Lee, J. J., Chung, J. H., Noh, J. Y., You, S. H., Kim, K. N., Im, J. H., Lee, J. H. and Seo, J. M. (2006) Antiplatelet and antithrombotic activities of Korean Red Ginseng. Arch. Pharm. Res. 29: 898-903. https://doi.org/10.1007/BF02973912
  99. Jin, Y. R., Yu, J. Y., Lee, J. J., You, S. H., Chung, J. H., Noh, J. Y., Im, J. H., Han, X. H., Kim, T. J. and Shin, K. S. (2007) Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin. Pharmacol. Toxicol. 100: 170-175. https://doi.org/10.1111/j.1742-7843.2006.00033.x
  100. Elmer, G. W., Lafferty, W. E., Tyree, P. T. and Lind, B. K. (2007) Potential interactions between complementary/alternative products and conventional medicines in a Medicare population. Ann. Pharmacother. 41: 1617-1624. https://doi.org/10.1345/aph.1K221
  101. Tachjian, A., Maria, V. and Jahangir, A. (2010) Use of herbal products and potential interactions in patients with cardiovascular diseases. Journal of the American College of Cardiology 55: 515-525. https://doi.org/10.1016/j.jacc.2009.07.074
  102. Ang-Lee, M. K., Moss, J. and Yuan, C. S. (2001) Herbal medicines and perioperative care. JAMA 286: 208-216. https://doi.org/10.1001/jama.286.2.208
  103. Takahashi, M. and Tokuyama, S. (1998) Pharmacological and physiological effects of ginseng on actions induced by opioids and psychostimulants. Methods Find Exp. Clin. Pharmacol. 20: 77-84. https://doi.org/10.1358/mf.1998.20.1.485635
  104. Mitra, S. K., Chakraborti, A. and Bhattacharya, S. K. (1996) Neuropharmacological studies on Panax ginseng. Indian J. Exp. Biol. 34: 41-47.
  105. Bhargava, H. N. and Ramarao, P. (1991) The effect of Panax ginseng on the development of tolerance to the pharmacological actions of morphine in the rat. Gen. Pharmacol. 22: 521-525. https://doi.org/10.1016/0306-3623(91)90017-Z
  106. Kim, H. C., Shin, E. J., Jang, C. G., Lee, M. K., Eun, J. S., Hong, J. T. and Oh, K. W. (2005) Pharmacological action of Panax ginseng on the behavioral toxicities induced by psychotropic agents. Arch. Pharm. Res. 28: 995-1001. https://doi.org/10.1007/BF02977391
  107. Abebe, W. (2002) Herbal medication: potential for adverse interactions with analgesic drugs. Journal of Clinical Pharmacy and Therapeutics. 27: 391-401. https://doi.org/10.1046/j.1365-2710.2002.00444.x
  108. Vuksan, V., Sievenpiper, J. L., Koo, V. Y., Francis, T., Beljan-Zdravkovic, U., Xu, Z. and Vidgen, E. (2000) American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus. Arch. Intern. Med. 160: 1009-1013. https://doi.org/10.1001/archinte.160.7.1009
  109. Vuksan, V., Stavro, M. P., Sievenpiper, J. L., Beljan-Zdravkovic, U., Leiter, L. A., Josse, R. G. and Xu, Z. (2000) Similar postprandial glycemic reductions with escalation of dose and administration time of American ginseng in type 2 diabetes. Diabetes Care 23: 1221-1226. https://doi.org/10.2337/diacare.23.9.1221
  110. Shishtar, E., Sievenpiper, J. L., Djedovic, V., Cozma, A. I., Ha, V., Jayalath, V. H., Jenkins, D. J., Meija, S. B., de Souza, R. J. and Jovanovski, E. (2014) The effect of ginseng (the genus panax) on glycemic control: a systematic review and meta-analysis of randomized controlled clinical trials. PLoS One 9: e107391. https://doi.org/10.1371/journal.pone.0107391
  111. Sotaniemi, E. A., Haapakoski, E. and Rautio, A. (1995) Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care 18: 1373-1375. https://doi.org/10.2337/diacare.18.10.1373
  112. Vuksan, V., Sung, M. K., Sievenpiper, J. L., Stavro, P. M., Jenkins, A. L., Di Buono, M., Lee, K. S., Leiter, L. A., Nam, K. Y. and Arnason, J. T. (2008) Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr. Metab. Cardiovasc. Dis. 18: 46-56. https://doi.org/10.1016/j.numecd.2006.04.003
  113. De Souza, L. R., Jenkins, A. L., Jovanovski, E., Rahelic, D. and Vuksan, V. (2015) Ethanol extraction preparation of American ginseng (Panax quinquefolius L) and Korean red ginseng (Panax ginseng C.A. Meyer): differential effects on postprandial insulinemia in healthy individuals. J. Ethnopharmacol. 159: 55-61. https://doi.org/10.1016/j.jep.2014.10.057
  114. Kiefer, D. and Pantuso, T. (2003) Panax ginseng. Am. Fam. Physician. 68: 1539-1542.
  115. Kim, H. J., Chun, Y. J., Park, J. D., Kim, S. I., Roh, J. K. and Jeong, T. C. (1997) Protection of rat liver microsomes against carbon tetrachloride-induced lipid peroxidation by red ginseng saponin through cytochrome P450 inhibition. Planta Med. 63: 415-418. https://doi.org/10.1055/s-2006-957724