Browse > Article

A Systematic Review on Potential Drug Interactions of Korean Ginseng Based upon Cytochrome P450 and P-Glycoprotein  

Nam, Ki Yeul (Dept. of medicinal crop/ginseng, Chungnam Agriculture Meister College)
Yang, Byung Wook (Leaders in INdustry-university Cooperation+ (LINC+), Semyung University)
Shin, Wang Soo (Central Research Institute, Korean Ginseng Research Co., Ltd.)
Park, Jong Dae (Central Research Institute, Korean Ginseng Research Co., Ltd.)
Publication Information
Korean Journal of Pharmacognosy / v.49, no.2, 2018 , pp. 85-102 More about this Journal
Abstract
A drug interaction is a situation in which a substance affects the activity of a drug, synergistically or antagonistically, when both are administered together. It has been shown that orally taken ginsenosides are deglycosylated by intestinal bacteria to give ginsenosides metabolites, which has been considered to be genuine pharmacological constituents and to exhibit drug interactions. Animal experimental results demonstrated that ginsenoside metabolites play an important role in the inhibitory or inductive action of both CYPs (cytochrome p450) and P-gp (p-glycoprotein), thereby can be applied as metabolic modulator to drug interactions. Very few are known on the possibility of drug interaction if taken the recommended dose of ginseng, but it has been found to act as CYPs inductor and P-gp inhibitor in any clinical trial, suggesting the risk that side effects will occur. It has been recently reported that interactions might also exist between ginseng and drugs such as warfarin, phenelzine, imatinib and raltegravir. Moreover, medicinal plants are increasingly being taken in a manner more often associated with prescription medicines. Therefore, considering the extensive applications of ginseng for safety, the aim of this review is to present a comprehensive overview of ginseng and drug interactions based upon pharmacodynamic and pharmacokinetic evidences.
Keywords
Panax ginseng; Ginsenosides; Drug interaction; Cytochrome P450; P-Glycoprotein; Pharmacokinetics; Pharmacodynamics;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Hao, M., Zhao, Y., Chen, P., Huang, H., Liu, H., Jiang, H., Zhang, R. and Wang, H. (2008) Structure-activity relationship and substrate-dependent phenomena in effects of ginsenosides on activities of drug-metabolizing P450 enzymes. PLoS One 3: e2697.   DOI
2 Hao, M., Ba, Q., Yin, J., Li, J., Zhao, Y. and Wang, H. (2011) Deglycosylated ginsenosides are more potent inducers of CYP1A1, CYP1A2 and CYP3A4 expression in HepG2 cells than glycosylated ginsenosides. Drug Metabolism and Pharmacokinetics 26: 201-205.   DOI
3 Fang, Z. Z., Cao, Y. F., Hu, C. M., Hong, M., Sun, X. Y., Ge, G. B., Liu, Y., Zhang, Y. Y., Yang, L. and Sun, H. Z. (2013) Structure-inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs). Toxicol. Appl. Pharmacol. 267: 149-154.   DOI
4 He, Y. J., Fang, Z. Z., Ge, G. B., Jiang, P., Jin, H. Z., Zhang, W. D. and Yang, L. (2013) The inhibitory effect of 20(S)-protopanaxatriol (ppt) towards UGT1A1 and UGT2B7. Phytother. Res. 27: 628-632.   DOI
5 Liang, Y., Zhou, Y., Zhang, J., Rao, T., Zhou, L., Xing, R., Wang, Q., Fu, H., Hao, K. and Xie, L. (2014) Pharmacokinetic compatibility of ginsenosides and Schisandra lignans in Shengmai-san: from the perspective of p-glycoprotein. PLoS One 9: e98717.   DOI
6 Molnar, J., Szabo, D., Pusztai, R., Mucsi, I., Berek, L., Ocsovszki, I., Kawata, E. and Shoyama, Y. (2000) Membrane associated antitumor effects of crocine-, ginsenoside- and cannabinoid derivates. Anticancer Res. 20: 861-867.
7 Kumar, G. N., Rodrigues, A. D., Buko, A. M. and Denissen, J. F. (1996) Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J. Pharmacol. Exp. Ther. 277: 423-431.
8 Eagling, V. A., Back, D. J. and Barry, M. G. (1997) Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br. J. Clin. Pharmacol. 44: 190-194.
9 Kiefer, D. and Pantuso, T. (2003) Panax ginseng. Am. Fam. Physician. 68: 1539-1542.
10 King, M. L., Adler, S. R. and Murphy, L. L. (2006) Extraction-dependent effects of American ginseng (Panax quinquefolium) on human breast cancer cell proliferation and estrogen receptor activation. Integr. Cancer Ther. 5: 236-243.   DOI
11 Kim, H. J., Chun, Y. J., Park, J. D., Kim, S. I., Roh, J. K. and Jeong, T. C. (1997) Protection of rat liver microsomes against carbon tetrachloride-induced lipid peroxidation by red ginseng saponin through cytochrome P450 inhibition. Planta Med. 63: 415-418.   DOI
12 Jiang, X., Williams, K. M., Liauw, W. S., Ammit, A. J., Roufogalis, B. D., Duke, C. C., Day, R. O. and McLachlan, A. J. (2004) Effect of St John's wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br. J. Clin. Pharmacol. 57: 592-599.   DOI
13 Hsu, W. L., Tsai, Y. T., Wu, C. T. and Lai, J. N. (2015) The Prescription pattern of chinese herbal products containing ginseng among tamoxifen-treated female breast cancer survivors in Taiwan: A Population-based study. Evid. Based Complement Alternat. Med. 2015: 385204.
14 Perini, J. A., Struchiner, C. J., Silva-Assuncao, E., Santana, I. S., Rangel, F., Ojopi, E. B., Dias-Neto, E. and Suarez-Kurtz, G. (2008) Pharmacogenetics of warfarin: development of a dosing algorithm for brazilian patients. Clinical Pharmacology and Therapeutics 84: 722-728.   DOI
15 Janetzky, K. and Morreale, A. P. (1997) Probable interaction between warfarin and ginseng. American Journal of Health-System Pharmacy 54: 692-693.
16 Jiang, X., Blair, E. Y. and McLachlan, A. J. (2006) Investigation of the effects of herbal medicines on warfarin response in healthy subjects: a population pharmacokinetic-pharmacodynamic modeling approach. J. Clin. Pharmacol. 46: 1370-1378.   DOI
17 Jones, B. D. and Runikis, A. M. (1987) Interaction of ginseng with phenelzine. J. Clin. Psychopharmacol. 7: 201-202.   DOI
18 Harbord, R. M., Egger, M. and Sterne, J. A. (2006) A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat. Med. 25: 3443-3457.   DOI
19 Izzo, A. A. and Ernst, E. (2009) Interactions between herbal medicines and prescribed drugs: an updated systematic review. Drugs 69: 1777-1798.   DOI
20 Shi, J., Cao, B., Zha, W. B., Wu, X. L., Liu, L. S., Xiao, W. J., Gu, R. R., Sun, R. B., Yu, X. Y. and Zheng, T. (2013) Pharmacokinetic interactions between 20(S)-ginsenoside Rh2 and the HIV protease inhibitor ritonavir in vitro and in vivo. Acta Pharmacologica Sinica 34: 1349-1358.   DOI
21 Borrelli, F. and Izzo, A. A. (2009) Herb-drug interactions with St John's wort (Hypericum perforatum): an update on clinical observations. Aaps J. 11: 710-727.   DOI
22 Beijnen, J. H. and Schellens, J. H. (2004) Drug interactions in oncology. Lancet Oncol. 5: 489-496.   DOI
23 Mallet, L., Spinewine, A. and Huang, A. (2007) The challenge of managing drug interactions in elderly people. Lancet 370: 185-191.   DOI
24 Yang L., Liu Y, Liu C. X. (2006) Metabolism and pharmacokinetics of ginsenosides. Asian Journal of Pharmacodynamics and Pharmacokinetics 6: 103-120.
25 Delaforge, M. (1998) Importance of metabolism in pharmacological studies: possible in vitro predictability. Nuclear Medicine and Biology 25: 705-709.   DOI
26 Nebert, D. W. and Russell, D. W. (2002) Clinical importance of the cytochromes P450. Lancet 360: 1155-1162.   DOI
27 Kaminsky, L. S. and Zhang, Q. Y. (2003) The small intestine as a xenobiotic-metabolizing organ. Drug Metabolism and Disposition: The biological fate of chemicals. 31: 1520-1525.   DOI
28 Lin, J. H. (2006) CYP induction-mediated drug interactions: in vitro assessment and clinical implications. Pharmaceutical research 23: 1089-1116.   DOI
29 Guengerich, F. P. (1999) Cytochrome P-450 3A4: regulation and role in drug metabolism. Annual Review of Pharmacology and Toxicology 39: 1-17.   DOI
30 Patel, J., Buddha, B., Dey, S., Pal, D. and Mitra, A. K. (2004) In vitro interaction of the HIV protease inhibitor ritonavir with herbal constituents: changes in P-gp and CYP3A4 activity. Am. J. Ther. 11: 262-277.   DOI
31 Lee, L. S., Wise, S. D., Chan, C., Parsons, T. L., Flexner, C. and Lietman, P. S. (2008) Possible differential induction of phase 2 enzyme and antioxidant pathways by American ginseng, Panax quinquefolius. J. Clin. Pharmacol. 48: 599-609.   DOI
32 Andrade, A. S., Hendrix, C., Parsons, T. L., Caballero, B., Yuan, C. S., Flexner, C. W., Dobs, A. S. and Brown, T. T. (2008) Pharmacokinetic and metabolic effects of American ginseng (Panax quinquefolius) in healthy volunteers receiving the HIV protease inhibitor indinavir. BMC Complement Altern. Med. 8: 50.   DOI
33 Mateo-Carrasco, H., Galvez-Contreras, M. C., Fernandez-Gines, F. D. and Nguyen, T. V. (2012) Elevated liver enzymes resulting from an interaction between Raltegravir and Panax ginseng: a case report and brief review. Drug Metabolism and Drug Interactions 27: 171-175.
34 Shader, R. I. and Greenblatt, D. J. (1988) Bees, ginseng and MAOIs revisited. J. Clin. Psychopharmacol. 8: 235.
35 Gurley, B. J., Gardner, S. F., Hubbard, M. A., Williams, D. K., Gentry, W. B., Cui, Y. and Ang, C. Y. (2005) Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly: St John's wort, garlic oil, Panax ginseng and Ginkgo biloba. Drugs Aging 22: 525-539.   DOI
36 Anderson, G. D., Rosito, G., Mohustsy, M. A. and Elmer, G. W. (2003) Drug interaction potential of soy extract and Panax ginseng. J. Clin. Pharmacol. 43: 643-648.   DOI
37 Collado-Borrell, R., Escudero-Vilaplana, V., Romero-Jimenez, R., Iglesias-Peinado, I., Herranz-Alonso, A. and Sanjurjo-Saez, M. (2016) Oral antineoplastic agent interactions with medicinal plants and food: an issue to take into account. Journal of Cancer Research and Clinical Oncology 142: 2319-2330.   DOI
38 Molassiotis, A., Potrata, B. and Cheng, K. K. (2009) A systematic review of the effectiveness of Chinese herbal medication in symptom management and improvement of quality of life in adult cancer patients. Complement Ther. Med. 17: 92-120.   DOI
39 Ernst, E. (2010) Panax ginseng: an overview of the clinical evidence. Journal of Ginseng Research 34: 259-263.   DOI
40 Bilgi, N., Bell, K., Ananthakrishnan, A. N. and Atallah, E. (2010) Imatinib and Panax ginseng: a potential interaction resulting in liver toxicity. Ann. Pharmacother. 44: 926-928.   DOI
41 Lee, Y., Jin, Y., Lim, W., Ji, S., Choi, S., Jang, S. and Lee, S. (2003) A ginsenoside-Rh1, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. The Journal of Steroid Biochemistry and Molecular Biology 84: 463-468.   DOI
42 Park, J., Song, H., Kim, S. K., Lee, M. S., Rhee, D. K. and Lee, Y. (2017) Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors. J. Ginseng Res. 41: 215-221.   DOI
43 Mohamadi, A., Aghaei, M. and Panjehpour, M. (2018) Estrogen stimulates adenosine receptor expression subtypes in human breast cancer MCF-7 cell line. Res. Pharm. Sci. 13: 57-64.   DOI
44 Shader, R. I. and Greenblatt, D. J. (1985) Phenelzine and the dream machine-ramblings and reflections. J. Clin. Psychopharmacol. 5: 65.   DOI
45 Ock, S. M., Hwang, S. S., Lee, J. S., Song, C. H. and Ock, C. M. (2010) Dietary supplement use by South Korean adults: Data from the national complementary and alternative medicine use survey (NCAMUS) in 2006. Nutr. Res. Pract. 4: 69-74.   DOI
46 de Lima Toccafondo Vieira, M. and Huang, S. M. (2012) Botanical-drug interactions: a scientific perspective. Planta Med. 78: 1400-1415.   DOI
47 Qi, L. W., Wang, C. Z., Du, G. J., Zhang, Z. Y., Calway, T. and Yuan, C. S. (2011) Metabolism of ginseng and its interactions with drugs. Curr. Drug Metab. 12: 818-822.   DOI
48 Wanwimolruk, S., Phopin, K. and Prachayasittikul, V. (2014) Cytochrome P450 enzyme mediated herbal drug interactions (Part 2). EXCLI J. 13: 869-896.
49 Werneke, U., Earl, J., Seydel, C., Horn, O., Crichton, P. and Fannon, D. (2004) Potential health risks of complementary alternative medicines in cancer patients. Br. J. Cancer 90: 408-413.   DOI
50 Robertson, S. M., Davey, R. T., Voell, J., Formentini, E., Alfaro, R. M. and Penzak, S. R. (2008) Effect of Ginkgo biloba extract on lopinavir, midazolam and fexofenadine pharmacokinetics in healthy subjects. Curr. Med. Res. Opin. 24: 591-599.   DOI
51 Penzak, S. R., Robertson, S. M., Hunt, J. D., Chairez, C., Malati, C. Y., Alfaro, R. M., Stevenson, J. M. and Kovacs, J. A. (2010) Echinacea purpurea significantly induces cytochrome P450 3A activity but does not alter lopinavir-ritonavir exposure in healthy subjects. Pharmacotherapy 30: 797-805.   DOI
52 He, N. and Edeki, T. (2004) The inhibitory effects of herbal components on CYP2C9 and CYP3A4 catalytic activities in human liver microsomes. Am. J. Ther. 11: 206-212.   DOI
53 Cho, Y. K., Jung, Y., Sung, H. and Joo, C. H. (2011) Frequent genetic defects in the HIV-1 5' LTR/gag gene in hemophiliacs treated with Korean Red Ginseng: Decreased detection of genetic defects by highly active antiretroviral therapy. J. Ginseng Res. 35: 413-420.   DOI
54 Malati, C. Y., Robertson, S. M., Hunt, J. D., Chairez, C., Alfaro, R. M., Kovacs, J. A. and Penzak, S. R. (2012) Influence of Panax ginseng on cytochrome P450 (CYP) 3A and P-glycoprotein (P-gp) activity in healthy participants. J. Clin. Pharmacol. 52: 932-939.   DOI
55 Kim, D. S., Kim, Y., Jeon, J. Y. and Kim, M. G. (2016) Effect of Red Ginseng on cytochrome P450 and P-glycoprotein activities in healthy volunteers. J. Ginseng Res. 40: 375-381.   DOI
56 Kim, M. G., Kim, Y., Jeon, J. Y. and Kim, D. S. (2016) Effect of fermented red ginseng on cytochrome P450 and P-glycoprotein activity in healthy subjects, as evaluated using the cocktail approach. Br. J. Clin. Pharmacol. 82: 1580-1590.   DOI
57 Lee, C. G., Gottesman, M. M., Cardarelli, C. O., Ramachandra, M., Jeang, K. T., Ambudkar, S. V., Pastan, I. and Dey, S. (1998) HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 37: 3594-3601.   DOI
58 Sotaniemi, E. A., Haapakoski, E. and Rautio, A. (1995) Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care 18: 1373-1375.   DOI
59 Vuksan, V., Stavro, M. P., Sievenpiper, J. L., Beljan-Zdravkovic, U., Leiter, L. A., Josse, R. G. and Xu, Z. (2000) Similar postprandial glycemic reductions with escalation of dose and administration time of American ginseng in type 2 diabetes. Diabetes Care 23: 1221-1226.   DOI
60 Shishtar, E., Sievenpiper, J. L., Djedovic, V., Cozma, A. I., Ha, V., Jayalath, V. H., Jenkins, D. J., Meija, S. B., de Souza, R. J. and Jovanovski, E. (2014) The effect of ginseng (the genus panax) on glycemic control: a systematic review and meta-analysis of randomized controlled clinical trials. PLoS One 9: e107391.   DOI
61 Vuksan, V., Sung, M. K., Sievenpiper, J. L., Stavro, P. M., Jenkins, A. L., Di Buono, M., Lee, K. S., Leiter, L. A., Nam, K. Y. and Arnason, J. T. (2008) Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr. Metab. Cardiovasc. Dis. 18: 46-56.   DOI
62 De Souza, L. R., Jenkins, A. L., Jovanovski, E., Rahelic, D. and Vuksan, V. (2015) Ethanol extraction preparation of American ginseng (Panax quinquefolius L) and Korean red ginseng (Panax ginseng C.A. Meyer): differential effects on postprandial insulinemia in healthy individuals. J. Ethnopharmacol. 159: 55-61.   DOI
63 Abebe, W. (2002) Herbal medication: potential for adverse interactions with analgesic drugs. Journal of Clinical Pharmacy and Therapeutics. 27: 391-401.   DOI
64 Liu, Y., Zhang, J. W., Li, W., Ma, H., Sun, J., Deng, M. C. and Yang, L. (2006) Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes. Toxicological Sciences 91: 356-364.   DOI
65 Drewe, J., Gutmann, H., Fricker, G., Torok, M., Beglinger, C. and Huwyler, J. (1999) HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochemical Pharmacology 57: 1147-1152.   DOI
66 Lee, P. S., Song, T. W., Sung, J. H., Moon, D. C., Song, S. and Chung, Y. B. (2006) Pharmacokinetic characteristics and hepatic distribution of IH-901, a novel intestinal metabolite of ginseng saponin, in rats. Planta Med. 72: 204-210.   DOI
67 Vuksan, V., Sievenpiper, J. L., Koo, V. Y., Francis, T., Beljan-Zdravkovic, U., Xu, Z. and Vidgen, E. (2000) American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus. Arch. Intern. Med. 160: 1009-1013.   DOI
68 Lewis, D. F., Ioannides, C., Parke, D. V. and Schulte-Hermann, R. (2000) Quantitative structure-activity relationships in a series of endogenous and synthetic steroids exhibiting induction of CYP3A activity and hepatomegaly associated with increased DNA synthesis. The Journal of Steroid Biochemistry and Molecular Biology 74: 179-185.   DOI
69 Smith, D. A. and Jones, B. C. (1992) Speculations on the substrate structure-activity relationship (SSAR) of cytochrome P450 enzymes. Biochemical Parmacology 44: 2089-2098.   DOI
70 Liu, Y., Ma, H., Zhang, J. W., Deng, M. C. and Yang, L. (2006) Influence of ginsenoside Rh1 and F1 on human cytochrome p450 enzymes. Planta Med. 72: 126-131.   DOI
71 Liu, Y., Li, W., Li, P., Deng, M. C., Yang, S. L. and Yang, L. (2004) The inhibitory effect of intestinal bacterial metabolite of ginsenosides on CYP3A activity. Biol. Pharm. Bull. 27: 1555-1560.   DOI
72 Xiao, J., Chen, D., Lin, X. X., Peng, S. F., Xiao, M. F., Huang, W. H., Wang, Y. C., Peng, J. B., Zhang, W. and Ouyang, D. S. (2016) Screening of drug metabolizing enzymes for the ginsenoside compound K in vitro: An efficient anticancer substance originating from Panax ginseng. PLoS One 11: e0147183.   DOI
73 Choi, C. H., Kang, G. and Min, Y. D. (2003) Reversal of P-glycoprotein-mediated multidrug resistance by protopanaxatriol ginsenosides from Korean red ginseng. Planta Med. 69: 235-240.   DOI
74 Chiu, N. T., Tomlinson Guns, E. S., Adomat, H., Jia, W. and Deb, S. (2014) Identification of human cytochrome P450 enzymes involved in the hepatic and intestinal biotransformation of 20(S)-protopanaxadiol. Biopharmaceutics and Drug Disposition 35: 104-118.   DOI
75 Cho, H. J. and Yoon, I. S. (2015) Pharmacokinetic interactions of herbs with cytochrome p450 and p-glycoprotein. Evid. Based Complement Alternat. Med. 2015: 736431.
76 Yang, Z., Gao, S., Wang, J., Yin, T., Teng, Y., Wu, B., You, M., Jiang, Z. and Hu, M. (2011) Enhancement of oral bioavailability of 20(S)-ginsenoside Rh2 through improved understanding of its absorption and efflux mechanisms. Drug Metabolism and Disposition 39: 1866-1872.   DOI
77 Yang, Z., Wang, J. R., Niu, T., Gao, S., Yin, T., You, M., Jiang, Z. H. and Hu, M. (2012) Inhibition of P-glycoprotein leads to improved oral bioavailability of compound K, an anticancer metabolite of red ginseng extract produced by gut microflora. Drug Metabolism and Disposition 40: 1538-1544.   DOI
78 Zhang, R., Jie, J., Zhou, Y., Cao, Z. and Li, W. (2009) Long-term effects of Panax ginseng on disposition of fexofenadine in rats in vivo. Am. J. Chin. Med. 37: 657-667.   DOI
79 Jin, Y. R., Yu, J. Y., Lee, J. J., You, S. H., Chung, J. H., Noh, J. Y., Im, J. H., Han, X. H., Kim, T. J. and Shin, K. S. (2007) Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin. Pharmacol. Toxicol. 100: 170-175.   DOI
80 Yu, J. Y., Jin, Y. R., Lee, J. J., Chung, J. H., Noh, J. Y., You, S. H., Kim, K. N., Im, J. H., Lee, J. H. and Seo, J. M. (2006) Antiplatelet and antithrombotic activities of Korean Red Ginseng. Arch. Pharm. Res. 29: 898-903.   DOI
81 Elmer, G. W., Lafferty, W. E., Tyree, P. T. and Lind, B. K. (2007) Potential interactions between complementary/alternative products and conventional medicines in a Medicare population. Ann. Pharmacother. 41: 1617-1624.   DOI
82 Tachjian, A., Maria, V. and Jahangir, A. (2010) Use of herbal products and potential interactions in patients with cardiovascular diseases. Journal of the American College of Cardiology 55: 515-525.   DOI
83 Ang-Lee, M. K., Moss, J. and Yuan, C. S. (2001) Herbal medicines and perioperative care. JAMA 286: 208-216.   DOI
84 Takahashi, M. and Tokuyama, S. (1998) Pharmacological and physiological effects of ginseng on actions induced by opioids and psychostimulants. Methods Find Exp. Clin. Pharmacol. 20: 77-84.   DOI
85 Mitra, S. K., Chakraborti, A. and Bhattacharya, S. K. (1996) Neuropharmacological studies on Panax ginseng. Indian J. Exp. Biol. 34: 41-47.
86 Kim, S. W., Kwon, H. Y., Chi, D. W., Shim, J. H., Park, J. D., Lee, Y. H., Pyo, S. and Rhee, D. K. (2003) Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg(3). Biochemical Pharmacology 65: 75-82.   DOI
87 Jin, J., Shahi, S., Kang, H. K., van Veen, H. W. and Fan, T. P. (2006) Metabolites of ginsenosides as novel BCRP inhibitors. Biochemical and Biophysical Research Communications 345: 1308-1314.   DOI
88 Zhang, J., Zhou, F., Wu, X., Zhang, X., Chen, Y., Zha, B. S., Niu, F., Lu, M., Hao, G. and Sun, Y. (2012) Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20(S)-ginsenoside Rh2 in MCF-7/Adr cells. Br. J. Pharmacol. 165: 120-134.   DOI
89 Gurley, B. J., Gardner, S. F., Hubbard, M. A., Williams, D. K., Gentry, W. B., Cui, Y. and Ang, C. Y. (2002) Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clinical Pharmacology and Therapeutics 72: 276-287.   DOI
90 Bhargava, H. N. and Ramarao, P. (1991) The effect of Panax ginseng on the development of tolerance to the pharmacological actions of morphine in the rat. Gen. Pharmacol. 22: 521-525.   DOI
91 Kim, H. C., Shin, E. J., Jang, C. G., Lee, M. K., Eun, J. S., Hong, J. T. and Oh, K. W. (2005) Pharmacological action of Panax ginseng on the behavioral toxicities induced by psychotropic agents. Arch. Pharm. Res. 28: 995-1001.   DOI
92 Henderson, G. L., Harkey, M. R., Gershwin, M. E., Hackman, R. M., Stern, J. S. and Stresser, D. M. (1999) Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci. 65: PL209-214.
93 Chang, T. K., Chen, J. and Benetton, S. A. (2002) In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metabolism and Disposition 30: 378-384.   DOI
94 Yu, C. T., Chen, J., Teng, X. W., Tong, V. and Chang, T. K. (2005) Lack of evidence for induction of CYP2B1, CYP3A23, and CYP1A2 gene expression by Panax ginseng and Panax quinquefolius extracts in adult rats and primary cultures of rat hepatocytes. Drug Metabolism and Disposition 33: 19-22.
95 Zheng, Y. F., Bae, S. H., Choi, E. J., Park, J. B., Kim, S. O., Jang, M. J., Park, G. H., Shin, W. G., Oh, E. and Bae, S. K. (2014) Evaluation of the in vitro/in vivo drug interaction potential of BST204, a purified dry extract of ginseng, and its four bioactive ginsenosides through cytochrome P450 inhibition/induction and UDP-glucuronosyltransferase inhibition. Food and Chemical Toxicology 68: 117-127.   DOI
96 Kawase, A., Yamada, A., Gamou, Y., Tahara, C., Takeshita, F., Murata, K., Matsuda, H., Samukawa, K. and Iwaki, M. (2014) Effects of ginsenosides on the expression of cytochrome P450s and transporters involved in cholesterol metabolism. J. Nat. Med. 68: 395-401.   DOI
97 Kawase, A., Yamada, A., Gamou, Y., Tahara, C., Takeshita, F., Murata, K., Matsuda, H., Samukawa, K. and Iwaki, M. (2013) Increased effects of ginsenosides on the expression of cholesterol 7alpha-hydroxylase but not the bile salt export pump are involved in cholesterol metabolism. J. Nat. Med. 67: 545-553.   DOI
98 Deb, S., Chin, M. Y., Adomat, H. and Guns, E. S. (2014) Ginsenoside-mediated blockade of 1 alpha, 25-dihydroxyvitamin D3 inactivation in human liver and intestine in vitro. The Journal of Steroid Biochemistry and Molecular Biology. 141: 94-103.   DOI
99 Yang, L. Q., Wang, B., Gan, H., Fu, S. T., Zhu, X. X., Wu, Z. N., Zhan, D. W., Gu, R. L., Dou, G. F. and Meng, Z. Y. (2012) Enhanced oral bioavailability and anti-tumour effect of paclitaxel by 20(s)-ginsenoside Rg3 in vivo. Biopharmaceutics and Drug Disposition 33: 425-436.   DOI
100 Kwon, H. Y., Kim, E. H., Kim, S. W., Kim, S. N., Park, J. D. and Rhee, D. K. (2008) Selective toxicity of ginsenoside Rg3 on multidrug resistant cells by membrane fluidity modulation. Arch. Pharm. Res. 31: 171-177.   DOI
101 Zhang, J., Zhou, F., Wu, X., Gu, Y., Ai, H., Zheng, Y., Li, Y., Zhang, X., Hao, G. and Sun, J. (2010) 20(S)-ginsenoside Rh2 noncompetitively inhibits P-glycoprotein in vitro and in vivo: a case for herb-drug interactions. Drug Metabolism and Disposition 38: 2179-2187.   DOI
102 Zhu, M., Chan, K. W., Ng, L.S., Chang, Q., Chang, S. and Li, R. C. (1999) Possible influences of ginseng on the pharmacokinetics and pharmacodynamics of warfarin in rats. J. Pharm. Pharmacol. 51: 175-180.   DOI
103 Lee, Y. H., Lee, B. K., Choi, Y. J., Yoon, I. K., Chang, B. C. and Gwak, H. S. (2010) Interaction between warfarin and Korean red ginseng in patients with cardiac valve replacement. International Journal of Cardiology. 145: 275-276.   DOI
104 Lee, S. H., Ahn, Y. M., Ahn, S. Y., Doo, H. K. and Lee, B. C. (2008) Interaction between warfarin and Panax ginseng in ischemic stroke patients. Journal of Aternative and Complementary Medicine 14: 715-721.   DOI
105 Qi, L. W., Wang, C. Z. and Yuan, C. S. (2011) Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 72: 689-699.   DOI
106 Ramanathan, M. R. and Penzak, S. R. (2017) Pharmacokinetic Drug Interactions with Panax ginseng. Eur. J. Drug Metab. Pharmacokinet. 42: 545-557.   DOI
107 Gu, Y., Wang, G. J., Sun, J. G., Jia, Y. W., Wang, W., Xu, M. J., Lv, T., Zheng, Y. T. and Sai, Y. (2009) Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food and Chemical Toxicology 47: 2257-2268.   DOI
108 Zhang, J., Zhou, F., Niu, F., Lu, M., Wu, X., Sun, J. and Wang, G. (2012) Stereoselective regulations of P-glycoprotein by ginsenoside Rh2 epimers and the potential mechanisms from the view of pharmacokinetics. PLoS One 7: e35768.   DOI
109 Kitagawa, S., Takahashi, T., Nabekura, T., Tachikawa, E. and Hasegawa, H. (2007) Inhibitory effects of ginsenosides and their hydrolyzed metabolites on daunorubicin transport in KB-C2 cells. Biol. Pharm. Bull. 30: 1979-1981.   DOI
110 Li, N., Wang, D., Ge, G., Wang, X., Liu, Y. and Yang, L. (2014) Ginsenoside metabolites inhibit P-glycoprotein in vitro and in situ using three absorption models. Planta Med. 80: 290-296.   DOI
111 Cui, Y., Shu, X. O., Gao, Y. T., Cai, H., Tao, M. H. and Zheng, W. (2006) Association of ginseng use with survival and quality of life among breast cancer patients. American Journal of Epidemiology 163: 645-653.   DOI
112 Yuan, C. S., Wei, G., Dey, L., Karrison, T., Nahlik, L., Maleckar, S., Kasza, K., Ang-Lee, M. and Moss, J. (2004) Brief communication: American ginseng reduces warfarin's effect in healthy patients: a randomized, controlled Trial. Annals of Internal Medicine 141: 23-27.   DOI
113 Kimura, Y., Okuda, H. and Arichi, S. (1988) Effects of various ginseng saponins on 5-hydroxytryptamine release and aggregation in human platelets. J. Pharm. Pharmacol. 40: 838-843.   DOI
114 Kuo, S. C., Teng, C. M., Lee, J. C., Ko, F. N., Chen, S. C. and Wu, T. S. (1990) Antiplatelet components in Panax ginseng. Planta Med. 56: 164-167.   DOI
115 Park, H. J., Lee, J. H., Song, Y. B. and Park, K. H. (1996) Effects of dietary supplementation of lipophilic fraction from Panax ginseng on cGMP and cAMP in rat platelets and on blood coagulation. Biol. Pharm. Bull. 19: 1434-1439.   DOI