• Title/Summary/Keyword: phagocytosis

Search Result 322, Processing Time 0.029 seconds

Anti-tumor Activity of Saponin Fraction of Platycodon gradiflourm through Immunomodulatory Effects associated with NO production in RAW264.7 cells (길경 사포닌 분획의 NO생성과 관련된 면역조절작용을 통한 대식세포의 항암활성에 미치는 효과)

  • Choung, Myoung-Gun;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.24 no.5
    • /
    • pp.557-563
    • /
    • 2011
  • Platycodon grandiflorum (Korean name, Doraji) has been widely used in traditional herbal medicine as an expectorant for pulmonary disease and a remedy for respiratory disorders in Asia. Here, we investigated the effects of BtOH extract saponin fraction of P. gradiflourm (PGS) on phagocytosis and anti-tumor activity with related cytokine productions in RAW264.7 macrophage cells. The results showed that PGS increased phagocytosis, anti-tumor activity, TNF-${\alpha}$ and nitric oxide (NO) production without direct tumor cell cytotoxicity. To further investigate whether NO is involved in anti-tumor and phagocytic activities of PGS, cells were co-treated with specific iNOS inhibitors, L-NIL (N6-(1-iminoethyl)-L-lysine, dihydrochloride), to block NO production. PGS decreased anti-tumor activity in L-NIL-treated cells, whereas phagocytic activity was not inhibited under the same conditions, indicating that the anti-tumor activity by PGS appears to be conducted by NO. These findings suggest that P. grandiflorum could be used a potential nutrition therapeutic agent for cancer patients.

An in vitro study of immune activity by β-1,3/1,6-glucan isolated from Aureobasidium pullulans (Aureobasidium pullulans으로 부터 분리한 β-1,3/1,6-glucan의 면역활성의 연구)

  • Yoon, Jong Young;Hwang, Kwontack
    • Food Science and Preservation
    • /
    • v.23 no.6
    • /
    • pp.906-912
    • /
    • 2016
  • ${\beta}$-Glucan is a natural compound contained in cell walls of yeast or fungi, and cereal's fiber. It is also known to boost the immune system in human. Aureobasidium is a producer of water-soluble ${\beta}$-1,3/1,6-glucan. In this study, natural killer (NK) cell and macrophage activity were tested to investigate the effects of ${\beta}$-1,3/1,6-glucan isolated from A. pullulans on immune activity. Activation of NK cell was increased about 63-39% by the treatment of $10-200{\mu}g/mL$ ${\beta}$-1,3/1,6-glucan than control. Besides, only $10{\mu}g/mL$ of ${\beta}$-1,3/1,6-glucan was enough to boost activation of NK cell. Phagocytosis of macrophage was increased to 15~21% by the treatment of $10{\sim}200{\mu}g/mL$ of ${\beta}$-1,3/1,6-glucan than zymosan-treatment. In LP-BM5 proliferating inhibition test, relative mRNA level of LP-BM5 virus was decreased in ${\beta}$-1,3/1,6-glucan-treated cell about 36~74% than control. The decline of LP-BM5 mRNA level appeared to depend on the concentration of ${\beta}$-1,3/1,6-glucan. These results suggest that pure ${\beta}$-1,3/1,6-glucan from A. pullulans might be contributing to enhancement of immune activity through the activation of NK cell and phagocytosis of macrophage. Moreover, treatment of the ${\beta}$-1,3/1,6-glucan could increase the resistance to virus infection such as LP-BM5 through the restraining of the multiplication.

Green Tea Polyphenol Epigallocatechine Gallate (EGCG) Prevented LPS-induced BV-2 Micoglial Cell Activation (BV-2 미세아교세포의 활성에 대한 녹차 유래 폴리페놀 EGCG의 억제 효과)

  • Park, Euteum;Chun, Hong Sung
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.640-645
    • /
    • 2016
  • Microglial cells are immediately activated in the central nervous system in response to a variety of neuronal environmental changes, such as injuries or inflammation. In addition to the modulation of the intrinsic immune response, a key role of microglial cells is the phagocytosis of dying cells and cellular debris. In this study, the inhibitory effects of epigallocatechine-3-gallate (EGCG), a most abundant and active polyphenol component of green tea, on lipopolysaccharide (LPS)-induced microglial activation are determined. EGCG dose dependently suppressed LPS-induced nitric oxide production and the expression of inducible nitric oxide synthase (iNOS) in BV-2 microglial cells. EGCG are potent LPS-induced inhibitors of several pro-inflammatory cytokine expressions, such as TNF-α and IL-1β, in microglial cells. Furthermore, EGCG generally inhibits the induction of LPS-mediated microglial activation and potently inhibits the phagocytosis of LPS-stimulated BV2 microglia. Although the conditioned media from LPS-stimulated BV-2 cells caused the SN4741 cell death, that from the conditioned media of EGCG pretreated BV-2 cells did not diminish the viability of SN4741 cells. These results suggest EGCG, a green tea polyphenol, could be a promising available molecule for the modulation of harmful microglial activation.

Immuno-modulation Effects of Ginsenoside Rg1 in Rat microglia

  • Joo, Seong-Soo;Won, Tae-Joon;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.204.2-205
    • /
    • 2003
  • Microglial cell is a monocyte involved in the brain, which acts for a primary immune reaction and phagocytosis. Microglia has also been considered to have a great role in AD pathogenesis due to its intact inflammatory and phagocytic responses against foreign invaders. In the study, we tried to investigate the modulation of activation of microglia using Rg1, a class of ginsenoside from red ginseng. which are known to protect neuron cells. (omitted)

  • PDF

Effects of Ginsenoside Rg1 on the Expression of TNF-$\alpha$ from Rat microglia

  • Joo, Seong-Soo;Won, Tae-Joon;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.202.1-202.1
    • /
    • 2003
  • Microglial cell can act for phagocytosis against abnormal particles in brain, which means that beta-amyloid produced from APP(amyloid precursor protein) can be phagocytosed by microglia when released. In contrast. when senile plaque has already been formed in brain cortex and hippocamphal region, microglia can also accelerate the AD pathogenesis due to chronic inflammatory action, which lead to neuron cell cytotoxicity. (omitted)

  • PDF

Effects of in vitro immune stimulation by ginsenoside Rb1

  • Kim, Ji-Young;Han, Eun-Hee;Jeong, Hye-Gwang
    • Proceedings of the Ginseng society Conference
    • /
    • 2006.05a
    • /
    • pp.57-58
    • /
    • 2006
  • Red ginseng is a classical traditional Chinese medicine. Among Chinese herbs, red ginseng has been considered as one of the tonics. Many studies indicated that red ginseng could enhance immune function of the human body. Red ginseng total saponin, ginsenoside, the most important active constituents identified in red ginseng can protect against myocardial ischaemia damage and protect endothelium against electrolysis-induced free radical injury. Macrophages play a significant role in host defense mechanisms. When activated, they inhibit the growth of a wide variety of tumor cells. The aim of this study was to determine the effects of pure ginsenoside Rb1 on immunostimulatory activity such as murine macrophage phagocytosis and proliferation of splenocytes. Furthermore, we investigated the effects of ginsenoside Rb1 on the production of nitric oxide (NO), reactive oxygen species (ROS) and proinflammatory cytokines (IL-1beta, IL-6, and TNF-alpha) in murine macrophage, RAW 264.7 cells. ROS have emerged as important signaling molecules in the regulation of various cellular processes. Ginsenoside Rb1 significantly increased production of ROS in dose dependent manner. As NO plays an important role in immune function, ginsenoside Rb1 treatment could modulate several aspects of host defense mechanisms due to stimulation. Treatment with ginsenoside Rb1 to macrophages induced the production of NO and proinflammatory cytokines and expression levels of these genes in a dose-dependent manner. Furthermore, incubation of RAW 264.7 cells with ginsenoside Rb1 showed a dose dependent increased phagocytosis activity and lymphocyte proliferation of splenocytes. Therefore, these results suggest that ginsenoside Rb1 has promising potential as a natural medicine for stimulation of the immune system.

  • PDF

The Soluble Form of the Cellular Prion Protein Enhances Phagocytic Activity and Cytokine Production by Human Monocytes Via Activation of ERK and $NF-{\kappa}B$

  • Jeon, Jae-Won;Park, Bum-Chan;Jung, Joon-Goo;Jang, Young-Soon;Shin, Eui-Cheol;Park, Young Woo
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.148-156
    • /
    • 2013
  • The $PrP^C$ is expressed in many types of immune cells including monocytes and macrophages, however, its function in immune regulation remains to be elucidated. In the present study, we examined a role for $PrP^C$ in regulation of monocyte function. Specifically, the effect of a soluble form of $PrP^C$ was studied in human monocytes. A recombinant fusion protein of soluble human $PrP^C$ fused with the Fc portion of human IgG1 (designated as soluble $PrP^C$-Fc) bound to the cell surface of monocytes, induced differentiation to macrophage-like cells, and enhanced adherence and phagocytic activity. In addition, soluble $PrP^C$-Fc stimulated monocytes to produce pro-inflammatory cytokines such as $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6. Both ERK and $NF-{\kappa}B$ signaling pathways were activated in soluble $PrP^C$-treated monocytes, and inhibitors of either pathway abrogated monocyte adherence and cytokine production. Taken together, we conclude that soluble $PrP^C$-Fc enhanced adherence, phagocytosis, and cytokine production of monocytes via activation of the ERK and $NF-{\kappa}B$ signaling pathways.