Browse > Article
http://dx.doi.org/10.4110/in.2013.13.4.148

The Soluble Form of the Cellular Prion Protein Enhances Phagocytic Activity and Cytokine Production by Human Monocytes Via Activation of ERK and $NF-{\kappa}B$  

Jeon, Jae-Won (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Bum-Chan (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology)
Jung, Joon-Goo (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology)
Jang, Young-Soon (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST)
Shin, Eui-Cheol (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST)
Park, Young Woo (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
IMMUNE NETWORK / v.13, no.4, 2013 , pp. 148-156 More about this Journal
Abstract
The $PrP^C$ is expressed in many types of immune cells including monocytes and macrophages, however, its function in immune regulation remains to be elucidated. In the present study, we examined a role for $PrP^C$ in regulation of monocyte function. Specifically, the effect of a soluble form of $PrP^C$ was studied in human monocytes. A recombinant fusion protein of soluble human $PrP^C$ fused with the Fc portion of human IgG1 (designated as soluble $PrP^C$-Fc) bound to the cell surface of monocytes, induced differentiation to macrophage-like cells, and enhanced adherence and phagocytic activity. In addition, soluble $PrP^C$-Fc stimulated monocytes to produce pro-inflammatory cytokines such as $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6. Both ERK and $NF-{\kappa}B$ signaling pathways were activated in soluble $PrP^C$-treated monocytes, and inhibitors of either pathway abrogated monocyte adherence and cytokine production. Taken together, we conclude that soluble $PrP^C$-Fc enhanced adherence, phagocytosis, and cytokine production of monocytes via activation of the ERK and $NF-{\kappa}B$ signaling pathways.
Keywords
Soluble $PrP^C$; Phagocytosis; Adherence; Pro-inflammatory cytokine; Signaling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Taylor, D. R. and N. M. Hooper. 2006. The prion protein and lipid rafts. Mol. Membr. Biol. 23: 89-99.   DOI
2 Jackson, G. S., I. Murray, L. L. Hosszu, N. Gibbs, J. P. Waltho, A. R. Clarke, and J. Collinge. 2001. Location and properties of metal-binding sites on the human prion protein. Proc. Natl. Acad. Sci. U. S. A. 98: 8531-8535.   DOI
3 Riek, R., S. Hornemann, G. Wider, M. Billeter, R. Glockshuber, and K. Wüthrich. 1996. NMR structure of the mouse prion protein domain PrP(121-231). Nature 382: 180-182.   DOI
4 Ermonval, M., S. Mouillet-Richard, P. Codogno, O. Kellermann, and J. Botti. 2003. Evolving views in prion glycosylation: functional and pathological implications. Biochimie. 85: 33-45.   DOI
5 Collinge, J. 2001. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24: 519-550   DOI
6 Prusiner, S. B. 1998. Prions. Proc. Natl. Acad. Sci. U. S. A. 95: 13363-13383.   DOI
7 Kretzschmar, H. A., S. B. Prusiner, L. E. Stowring, and S. J. DeArmond. 1986. Scrapie prion proteins are synthesized in neurons. Am. J. Pathol. 122: 1-5.
8 Zhang, C. C., A. D. Steele, S. Lindquist, and H. F. Lodish. 2006. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their selfrenewal. Proc. Natl. Acad. Sci. U. S. A. 103: 2184-2189.   DOI
9 Durig, J., A. Giese, W. Schulz-Schaeffer, C. Rosenthal, U. Schmucker, J. Bieschke, U. Duhrsen, and H. A. Kretzschmar. 2000. Differential constitutive and activation-dependent expression of prion protein in human peripheral blood leucocytes. Br. J. Haematol. 108: 488-495.   DOI
10 Dodelet, V. C. and N. R. Cashman. 1998. Prion protein expression in human leukocyte differentiation. Blood 91: 1556-1561.
11 Burthem, J., B. Urban, A. Pain, and D. J. Roberts. 2001. The normal cellular prion protein is strongly expressed by myeloid dendritic cells. Blood 98: 3733-3738.   DOI
12 Thielen, C., N. Antoine, F. Melot, J. Y. Cesbron, E. Heinen, and R. Tsunoda. 2001. Human FDC express PrPc in vivo and in vitro. Dev. Immunol. 8: 259-266.   DOI
13 Taylor, D. R., E. T. Parkin, S. L. Cocklin, J. R. Ault, A. E. Ashcroft, A. J. Turner, and N. M. Hooper. 2009. Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein. J. Biol. Chem. 284: 22590-22600.   DOI
14 Endres, K., G. Mitteregger, E. Kojro, H. Kretzschmar, and F. Fahrenholz. 2009. Influence of ADAM10 on prion protein processing and scrapie infectiosity in vivo. Neurobiol. Dis. 36: 233-241.   DOI
15 Parizek, P., C. Roeckl, J. Weber, E. Flechsig, A. Aguzzi, and A. J. Raeber. 2001. Similar turnover and shedding of the cellular prion protein in primary lymphoid and neuronal cells. J. Biol. Chem. 276: 44627-44632.   DOI
16 Isaacs, J. D., G. S. Jackson, and D. M. Altmann. 2006. The role of the cellular prion protein in the immune system. Clin. Exp. Immunol. 146: 1-8.   DOI
17 Hu, W., R. N. Rosenberg, and O. Stuve. 2007. Prion proteins: a biological role beyond prion diseases. Acta. Neurol. Scand. 116: 75-82.   DOI
18 de Almeida, C. J., L. B. Chiarini, J. P. da Silva, P. M. R. e Silva, M. A. Martins, and R. Linden. 2005. The cellular prion protein modulates phagocytosis and inflammatory response. J. Leukoc. Biol. 77: 238-246.   DOI
19 Nitta, K., A. Sakudo, J. Masuyama, G. Xue, K. Sugiura, and T. Onodera. 2009. Role of cellular prion proteins in the function of macrophages and dendritic cells. Protein. Pept. Lett. 16: 239-246.   DOI
20 Uraki, R., A. Sakudo, S. Ando, H. Kitani, and T. Onodera. 2010. Enhancement of phagocytotic activity by prion protein in PrP-deficient macrophage cells. Int. J. Mol. Med. 26: 527-532
21 Krebs, B., C. Dorner-Ciossek, R. Schmalzbauer, N. Vassallo, J. Herms, and H. A. Kretzschmar. 2006. Prion protein induced signaling cascades in monocytes. Biochem. Biophys. Res. Commun. 340: 13-22.   DOI
22 Jeon, J. W., J. G. Jung, E. C. Shin, H. I. Choi, H. Y. Kim, M. L. Cho, S. W. Kim, Y. S. Jang, M. H. Sohn, J. H. Moon, Y. H. Cho, K. L. Hoe, Y. S. Seo, and Y. W. Park. 2010. Soluble CD93 induces differentiation of monocytes and enhances TLR responses. J. Immunol. 185: 4921-4927.   DOI
23 Guha, M. and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cell. Signal. 13: 85-94.   DOI
24 Schmitt-Ulms, G., G. Legname, M. A. Baldwin, H. L. Ball, N. Bradon, P. J. Bosque, K. L. Crossin, G. M. Edelman, S. J. DeArmond, F. E. Cohen, and S. B. Prusiner. 2001. Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J. Mol. Biol. 314: 1209-1225.   DOI
25 Gauczynski, S., J. M. Peyrin, S. Haik, C. Leucht, C. Hundt, R. Rieger, S. Krasemann, J. P. Deslys, D. Dormont, C. I. Lasmezas, and S. Weiss. 2001. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J. 20: 5863-5875.   DOI
26 Graner, E., A. F. Mercadante, S. M. Zanata, O. V. Forlenza, A. L. Cabral, S. S. Veiga, M. A. Juliano, R. Roesler, R. Walz, A. Minetti, I. Izquierdo, V. R. Martins, and R. R. Brentani. 2000. Cellular prion protein binds laminin and mediates neuritogenesis. Brain. Res. Mol. Brain. Res. 76: 85-92.   DOI
27 Hundt, C., J. M. Peyrin, S. Haik, S. Gauczynski, C. Leucht, R. Rieger, M. L. Riley, J. P. Deslys, D. Dormont, C. I. Lasmezas, and S. Weiss. 2001. Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J. 20: 5876-5886.   DOI