DOI QR코드

DOI QR Code

The Soluble Form of the Cellular Prion Protein Enhances Phagocytic Activity and Cytokine Production by Human Monocytes Via Activation of ERK and $NF-{\kappa}B$

  • Jeon, Jae-Won (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Bum-Chan (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jung, Joon-Goo (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jang, Young-Soon (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST) ;
  • Shin, Eui-Cheol (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST) ;
  • Park, Young Woo (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2013.07.09
  • Accepted : 2013.07.22
  • Published : 2013.08.30

Abstract

The $PrP^C$ is expressed in many types of immune cells including monocytes and macrophages, however, its function in immune regulation remains to be elucidated. In the present study, we examined a role for $PrP^C$ in regulation of monocyte function. Specifically, the effect of a soluble form of $PrP^C$ was studied in human monocytes. A recombinant fusion protein of soluble human $PrP^C$ fused with the Fc portion of human IgG1 (designated as soluble $PrP^C$-Fc) bound to the cell surface of monocytes, induced differentiation to macrophage-like cells, and enhanced adherence and phagocytic activity. In addition, soluble $PrP^C$-Fc stimulated monocytes to produce pro-inflammatory cytokines such as $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6. Both ERK and $NF-{\kappa}B$ signaling pathways were activated in soluble $PrP^C$-treated monocytes, and inhibitors of either pathway abrogated monocyte adherence and cytokine production. Taken together, we conclude that soluble $PrP^C$-Fc enhanced adherence, phagocytosis, and cytokine production of monocytes via activation of the ERK and $NF-{\kappa}B$ signaling pathways.

Keywords

References

  1. Taylor, D. R. and N. M. Hooper. 2006. The prion protein and lipid rafts. Mol. Membr. Biol. 23: 89-99. https://doi.org/10.1080/09687860500449994
  2. Jackson, G. S., I. Murray, L. L. Hosszu, N. Gibbs, J. P. Waltho, A. R. Clarke, and J. Collinge. 2001. Location and properties of metal-binding sites on the human prion protein. Proc. Natl. Acad. Sci. U. S. A. 98: 8531-8535. https://doi.org/10.1073/pnas.151038498
  3. Riek, R., S. Hornemann, G. Wider, M. Billeter, R. Glockshuber, and K. Wüthrich. 1996. NMR structure of the mouse prion protein domain PrP(121-231). Nature 382: 180-182. https://doi.org/10.1038/382180a0
  4. Ermonval, M., S. Mouillet-Richard, P. Codogno, O. Kellermann, and J. Botti. 2003. Evolving views in prion glycosylation: functional and pathological implications. Biochimie. 85: 33-45. https://doi.org/10.1016/S0300-9084(03)00040-3
  5. Collinge, J. 2001. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24: 519-550 https://doi.org/10.1146/annurev.neuro.24.1.519
  6. Prusiner, S. B. 1998. Prions. Proc. Natl. Acad. Sci. U. S. A. 95: 13363-13383. https://doi.org/10.1073/pnas.95.23.13363
  7. Kretzschmar, H. A., S. B. Prusiner, L. E. Stowring, and S. J. DeArmond. 1986. Scrapie prion proteins are synthesized in neurons. Am. J. Pathol. 122: 1-5.
  8. Zhang, C. C., A. D. Steele, S. Lindquist, and H. F. Lodish. 2006. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their selfrenewal. Proc. Natl. Acad. Sci. U. S. A. 103: 2184-2189. https://doi.org/10.1073/pnas.0510577103
  9. Durig, J., A. Giese, W. Schulz-Schaeffer, C. Rosenthal, U. Schmucker, J. Bieschke, U. Duhrsen, and H. A. Kretzschmar. 2000. Differential constitutive and activation-dependent expression of prion protein in human peripheral blood leucocytes. Br. J. Haematol. 108: 488-495. https://doi.org/10.1046/j.1365-2141.2000.01881.x
  10. Dodelet, V. C. and N. R. Cashman. 1998. Prion protein expression in human leukocyte differentiation. Blood 91: 1556-1561.
  11. Burthem, J., B. Urban, A. Pain, and D. J. Roberts. 2001. The normal cellular prion protein is strongly expressed by myeloid dendritic cells. Blood 98: 3733-3738. https://doi.org/10.1182/blood.V98.13.3733
  12. Thielen, C., N. Antoine, F. Melot, J. Y. Cesbron, E. Heinen, and R. Tsunoda. 2001. Human FDC express PrPc in vivo and in vitro. Dev. Immunol. 8: 259-266. https://doi.org/10.1155/2001/45454
  13. Taylor, D. R., E. T. Parkin, S. L. Cocklin, J. R. Ault, A. E. Ashcroft, A. J. Turner, and N. M. Hooper. 2009. Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein. J. Biol. Chem. 284: 22590-22600. https://doi.org/10.1074/jbc.M109.032599
  14. Endres, K., G. Mitteregger, E. Kojro, H. Kretzschmar, and F. Fahrenholz. 2009. Influence of ADAM10 on prion protein processing and scrapie infectiosity in vivo. Neurobiol. Dis. 36: 233-241. https://doi.org/10.1016/j.nbd.2009.07.015
  15. Parizek, P., C. Roeckl, J. Weber, E. Flechsig, A. Aguzzi, and A. J. Raeber. 2001. Similar turnover and shedding of the cellular prion protein in primary lymphoid and neuronal cells. J. Biol. Chem. 276: 44627-44632. https://doi.org/10.1074/jbc.M107458200
  16. Isaacs, J. D., G. S. Jackson, and D. M. Altmann. 2006. The role of the cellular prion protein in the immune system. Clin. Exp. Immunol. 146: 1-8. https://doi.org/10.1111/j.1365-2249.2006.03194.x
  17. Hu, W., R. N. Rosenberg, and O. Stuve. 2007. Prion proteins: a biological role beyond prion diseases. Acta. Neurol. Scand. 116: 75-82. https://doi.org/10.1111/j.1600-0404.2007.00868.x
  18. de Almeida, C. J., L. B. Chiarini, J. P. da Silva, P. M. R. e Silva, M. A. Martins, and R. Linden. 2005. The cellular prion protein modulates phagocytosis and inflammatory response. J. Leukoc. Biol. 77: 238-246. https://doi.org/10.1189/jlb.1103531
  19. Nitta, K., A. Sakudo, J. Masuyama, G. Xue, K. Sugiura, and T. Onodera. 2009. Role of cellular prion proteins in the function of macrophages and dendritic cells. Protein. Pept. Lett. 16: 239-246. https://doi.org/10.2174/092986609787601705
  20. Uraki, R., A. Sakudo, S. Ando, H. Kitani, and T. Onodera. 2010. Enhancement of phagocytotic activity by prion protein in PrP-deficient macrophage cells. Int. J. Mol. Med. 26: 527-532
  21. Krebs, B., C. Dorner-Ciossek, R. Schmalzbauer, N. Vassallo, J. Herms, and H. A. Kretzschmar. 2006. Prion protein induced signaling cascades in monocytes. Biochem. Biophys. Res. Commun. 340: 13-22. https://doi.org/10.1016/j.bbrc.2005.11.158
  22. Jeon, J. W., J. G. Jung, E. C. Shin, H. I. Choi, H. Y. Kim, M. L. Cho, S. W. Kim, Y. S. Jang, M. H. Sohn, J. H. Moon, Y. H. Cho, K. L. Hoe, Y. S. Seo, and Y. W. Park. 2010. Soluble CD93 induces differentiation of monocytes and enhances TLR responses. J. Immunol. 185: 4921-4927. https://doi.org/10.4049/jimmunol.0904011
  23. Guha, M. and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cell. Signal. 13: 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  24. Schmitt-Ulms, G., G. Legname, M. A. Baldwin, H. L. Ball, N. Bradon, P. J. Bosque, K. L. Crossin, G. M. Edelman, S. J. DeArmond, F. E. Cohen, and S. B. Prusiner. 2001. Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J. Mol. Biol. 314: 1209-1225. https://doi.org/10.1006/jmbi.2000.5183
  25. Gauczynski, S., J. M. Peyrin, S. Haik, C. Leucht, C. Hundt, R. Rieger, S. Krasemann, J. P. Deslys, D. Dormont, C. I. Lasmezas, and S. Weiss. 2001. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J. 20: 5863-5875. https://doi.org/10.1093/emboj/20.21.5863
  26. Hundt, C., J. M. Peyrin, S. Haik, S. Gauczynski, C. Leucht, R. Rieger, M. L. Riley, J. P. Deslys, D. Dormont, C. I. Lasmezas, and S. Weiss. 2001. Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J. 20: 5876-5886. https://doi.org/10.1093/emboj/20.21.5876
  27. Graner, E., A. F. Mercadante, S. M. Zanata, O. V. Forlenza, A. L. Cabral, S. S. Veiga, M. A. Juliano, R. Roesler, R. Walz, A. Minetti, I. Izquierdo, V. R. Martins, and R. R. Brentani. 2000. Cellular prion protein binds laminin and mediates neuritogenesis. Brain. Res. Mol. Brain. Res. 76: 85-92. https://doi.org/10.1016/S0169-328X(99)00334-4

Cited by

  1. Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/270302
  2. IKK β -Targeted Anti-Inflammatory Activities of a Butanol Fraction of Artificially Cultivated Cordyceps pruinosa Fruit Bodies vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/562467
  3. Prion Protein Signaling in the Nervous System-A Review and Perspective vol.3, pp.None, 2014, https://doi.org/10.4137/sti.s12319
  4. Expression of genes involved in the T cell signalling pathway in circulating immune cells of cattle 24 months following oral challenge with Bovine Amyloidotic Spongiform Encephalopathy (BASE) vol.11, pp.None, 2013, https://doi.org/10.1186/s12917-015-0412-y
  5. Plasma Soluble Prion Protein, a Potential Biomarker for Sport-Related Concussions: A Pilot Study vol.10, pp.2, 2013, https://doi.org/10.1371/journal.pone.0117286
  6. Lipopolysaccharide로 유도된 RAW 264.7 세포와 마우스모델에 대한 진두발 에탄올 추출물의 항염증 효과 vol.44, pp.3, 2013, https://doi.org/10.4014/mbl.1603.03004
  7. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules vol.10, pp.None, 2013, https://doi.org/10.3389/fnmol.2017.00077
  8. The Role of Shed PrPc in the Neuropathogenesis of HIV Infection vol.199, pp.1, 2013, https://doi.org/10.4049/jimmunol.1601041
  9. Expression and functions of cellular prion proteins in immunocytes vol.91, pp.3, 2013, https://doi.org/10.1111/sji.12854
  10. LETMD1 Regulates Phagocytosis and Inflammatory Responses to Lipopolysaccharide via Reactive Oxygen Species Generation and NF-κB Activation in Macrophages vol.204, pp.5, 2020, https://doi.org/10.4049/jimmunol.1900551
  11. Microglia in Prion Diseases: Angels or Demons? vol.21, pp.20, 2013, https://doi.org/10.3390/ijms21207765
  12. PrPC as a Transducer of Physiological and Pathological Signals vol.14, pp.None, 2013, https://doi.org/10.3389/fnmol.2021.762918