• Title/Summary/Keyword: petroleum oil

Search Result 666, Processing Time 0.03 seconds

Study on Pyrolysis Characteristics for Upgrading of Bitumen-Like Heavy Oil Contained in Indonesian Resources (인도네시아산 자원 내에 포함된 역청성 오일의 경질화를 위한 열분해 특성에 관한 연구)

  • Jang, Jung Hee;Han, Gi Bo;Park, Cheon-kyu;Jeon, Cheol-Hwan;Kim, Jae-Kon;Kwak, Hyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.292-298
    • /
    • 2016
  • In this study, the pyrolysis process was carried out in order to upgrade of heavy oil contained in the resources from Indonesia. In order to investigate the composition and basic properties of the heavy oil contained in the resources, the various analytical methods was used and then the TGA (thermogravimetric) method was especially used for the thermal degradation characteristics of heavy oil in the pyrolysis. From the results obtained from the various analytical methods, the reaction conditions such as the reaction temperature was collected for the pyrolysis process and the pyrolysis using the resources containing the heavy oil was conducted using the fixed-bed reactor under the various reaction conditions. Consequently, We found that the content of heavy oil contained in the resources was about 35% and the conversion of heavy oil and the recovery efficiency of thermal degradation oil were about 21 and 80%, respectively.

Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials (석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성)

  • Kim, Daesup;Lim, Chaehun;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.496-501
    • /
    • 2022
  • In this study, an anode material for lithium secondary batteries was manufactured using petroleum-based residual oil, which is a petroleum refining by-product. Among petroleum-based residual oils, pyrolysis fuel oil (PFO), fluidized catalyst cracking-decant oil (FCC-DO), and vacuum residue (VR) were used as carbon precursors. The physicochemical characteristics of petroleum-based residual oil were confirmed through Matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) and elemental analysis (EA), and the structural characteristics of anode materials manufactured from residual oil were evaluated using X-ray crystallography (XRD) and Raman spectroscopic techniques. VR was found to contain a wide range of molecular weight distributions and large amounts of impurities compared to PFO and FCC-DO, and PFO and FCC-DO exhibited almost similar physicochemical characteristics. From the XRD analysis results, carbonized PFO and FCC-DO showed similar d002 values. However, it was confirmed that FCC-DO had a more developed layered structure than PFO in Lc (Length of a and c axes in the crystal system) and La values. In addition, FCC-DO showed the best cycle characteristics in electrochemical characteristics evaluation. According to the physicochemical and electrochemical results of the petroleum-based residual oil, FCC-DO is a better carbon precursor for a lithium secondary battery than PFO and VR.

국내 석유제품가격의 변동에 대한 소비자의 인식과 비대칭 분석 비교

  • O, Seon-A;Heo, Eun-Nyeong
    • Environmental and Resource Economics Review
    • /
    • v.21 no.1
    • /
    • pp.69-92
    • /
    • 2012
  • This paper analyzed price asymmetry of domestic petroleum products by distribution stage. Analyzing the asymmetry by distribution stage, we can investigate the gap between analysis results and consumers' perception. For the first stage, we analyzed asymmetries between retail prices including tax and the spot prices of crude oil. The results show that retail price increases more quickly in response to the crude oil prices rise than to the crude oil prices fall as consumers' perception. For the second stage, we analyzed asymmetry of international petroleum product prices in Korean Won with the change in the crude oil spot prices. The results show that international petroleum product prices increase higher in response to the crude oil prices increase than to the crude oil prices decrease. For the final stage, we examined the asymmetry of wholesale price and retail price with the change in the international petroleum product prices in Korean Won. The results show that wholesale prices increase more quickly in response to the crude oil prices rise than to the international petroleum product prices fall. The retail prices, however, decrease more quickly in response to the crude oil prices fall than to the international petroleum product prices rise.

  • PDF

기름 유출로 인한 토양 및 지하수의 오염

  • Kim Dong-Jin;Yang Jae-Eui;Yu Jin-Yeol;Kim Hui-Gap;Kim Gi-Dong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.424-427
    • /
    • 2006
  • Soil contamination with petroleum oil around a military army was investigated. It showed that soils of a riverside highland, an entrance of the military army, and nearby roads were contaminated with total petroleum hydrocarbons (TPH) released from the military army to the depth of approximately 2 m. The measured concentrations were as high as 15,277 mg/kg. A wide range of soil in the riverside highland was contaminated by the movement of oil to the surface soil, which occurred with the vertical movement of groundwater table caused by the change of river water level and groundwater level. Spilled petroleum oil components were released into Wonju Stream by the increase of hydraulic conductivity and the groundwater flow.

  • PDF

An oil-tolerant and salt-resistant aqueous foam system for heavy oil transportation

  • Sun, Jie;Jing, Jiaqiang;Brauner, Neima;Han, Li;Ullmann, Amos
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.99-108
    • /
    • 2018
  • An oil-tolerant and salt-resistant aqueous foam system was screened out as a possible lubricant to enable cold heavy oil transportation. The microstructures and viscoelasticity and effects of heavy oil, salt and temperature on the foam stability were investigated and new rheological and drainage models were established. The results indicate the foam with multilayered shells belongs to a special microcellular foam. The viscoelasticity could be neglected due to its low relaxation time. The drainage process can be divided into three stages. The foam with quality of 67.9% maintains great stability at high oil and salt concentrations and appropriate elevated temperature.

Compositional Characterization of Petroleum Heavy Oils Generated from Vacuum Distillation and Catalytic Cracking by Positive-mode APPI FT-ICR Mass Spectrometry

  • Kim, Eun-Kyoung;No, Myoung-Han;Koh, Jae-Suk;Kim, Sung-Whan
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.41-44
    • /
    • 2011
  • Molecular compositions of two types of heavy oil were studied using positive atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Vacuum gas oil (VGO) was generated from vacuum distillation of atmospheric residual oil (AR), and slurry oil (SLO) was generated from catalytic cracking of AR. These heavy oils have similar boiling point ranges in the range of 210-$650^{\circ}C$, but they showed different mass ranges and double-bond equivalent (DBE) distributions. Using DBE and carbon number distributions, aromatic ring distributions, and the extent of alkyl side chains were estimated. In addition to the main aromatic hydrocarbon compounds, those containing sulfur, nitrogen, and oxygen heteroatoms were identified using simple sample preparation and ultra-high mass resolution FT-ICR MS analysis. VGO is primarily composed of mono- and di-aromatic hydrocarbons as well as sulfur-containing hydrocarbons, whereas SLO contained mainly polyaromatic hydrocarbons and sulfur-containing hydrocarbons. Both heavy oils contain polyaromatic nitrogen components. SLO inludes shorter aromatic alkyl side chains than VGO. This study demonstrates that APPI FT-ICR MS is useful for molecular composition characterization of petroleum heavy oils obtained from different refining processes.

Stress field interference of hydraulic fractures in layered formation

  • Zhu, Haiyan;Zhang, Xudong;Guo, Jianchun;Xu, Yaqin;Chen, Li;Yuan, Shuhang;Wang, Yonghui;Huang, Jingya
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.645-667
    • /
    • 2015
  • Single treatment and staged treatments in vertical wells are widely applied in sandstone and mudstone thin interbedded (SMTI) reservoir to stimulate the reservoir. The keys and difficulties of stimulating this category of formations are to avoid hydraulic fracture propagating through the interface between shale and sand as well as control the fracture height. In this paper, the cohesive zone method was utilized to build the 3-dimensional fracture dynamic propagation model in shale and sand interbedded formation based on the cohesive damage element. Staged treatments and single treatment were simulated by single fracture propagation model and double fractures propagation model respectively. Study on the changes of fracture vicinity stress field during propagation is to compare and analyze the parameters which influence the interfacial induced stresses between two different fracturing methods. As a result, we can prejudge how difficult it is that the fracture propagates along its height direction. The induced stress increases as the pumping rate increasing and it changes as a parabolic function of the fluid viscosity. The optimized pump rate is $4.8m^3/min$ and fluid viscosity is $0.1Pa{\cdot}s$ to avoid the over extending of hydraulic fracture in height direction. The simulation outcomes were applied in the field to optimize the treatment parameters and the staged treatments was suggested to get a better production than single treatment.

A Study on the Property and Performance Characteristics of Different Kind Engine Oil by Endurance Test of Heavy-duty Diesel Engine (대형 디젤엔진 내구 시험에 의한 다른 종류 엔진오일의 물성 및 성능 특성에 관한 연구)

  • Lee, Minho;Kim, Jeonghwan;Song, Hoyoung;Kim, Giho;Ha, Jonghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.48-56
    • /
    • 2014
  • Engine oil is an oil used for lubrication of various internal combustion engines. The main function is to reduce wear on moving parts; it also cleans, inhibits corrosion, improves sealing, and cools the engine by carrying heat away from moving parts. In engines, there are parts which move against each other. Otherwise, the friction wastes the useful power by converting the kinetic energy to heat. Those parts were worn away, which could lead to lower efficiency and degradation of the engine. It increases fuel consumption, decreases power output, and can induce the engine failure. This study was conducted to evaluate the relation between engine oil property changes and engine performance for the diesel engine. This test was performed by using 12L, 6 cylinder, heavy duty engines. Low SAPS 10W30 engine oil (two type engine oils) was used. Test procedure and method was in accordance with the modified CEC L-57-T97 (OM441LA) method. In this study, TAN, TBN, KV and metal components, engine power, blowby gas, A_F were presented to evaluate the relation with engine oil property changes and engine performance. TAN, TBN, KV and metal We found that the components were generally increased but engine performance did not change. This results mean that property changes did not affect on engine performance because those were not enough to affect engine performance.

Effect of Hydrocarbon Uptake Modes on Oil Degradation Rate by Mixed Cultures of Petroleum Degraders (Hydrocarbon Uptake Modes에 따른 유류분해 미생물 혼합체의 원유분해능)

  • 고성환;이홍금;김상진
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.606-614
    • /
    • 1998
  • In this study, biodegradation rate of Arabian light crude oil by mixed cultures of selected petroleum-degraders was determined. Their modes of hydrocarbon uptake were then observed to determine whether there are differences in biodegradation rate by the mixed cultures. By the mixed cultures of petroleum-degraders having same modes of hydrocarbon uptake, such as strain US1 and K1 (using pseudo-solubilized hydrocarbons by a biosurfactants), K2-2 and P1(using hydrocarbons by direct contact), CL 180 and IC-10 (mixed type of uptake modes), the biodegradation rates of aliphatics in the crude oil were increased more than those by their pure cultures, about 40%, 25% and 20%, respectively. Biodegradation rate of strain KH3-2 (using only water- dissolved hydrocarbons) was increased by mixed cultures with strain K1, CL180 or IC-10 possessing high emulsifying activity. However, the biodegradation rate of the crude oil was decreased about 20%-40% by the mixed cultures of petroleum-degraders having different mode of hydrocarbon uptake, such as addition of strain US1 or K1 in the cultures of K2-2 or P1. Biosurfactants produced by US1 or K1 seems to enhance the emulsification of crude oil in aqueous phase but inhibit the attachment of K2-2 or P1 to crude oil. As same phenomena, the addition to Triton X-100 into the culture of strain US1, K1, CL180, IC-10 or KH3-2 increased the biodegradation rate, but the addition in the culture of strain K2-2 or P1 decreased the biodegradation rate. The mixed culture made of CL180, IC-10 and KH3-2 degraded 61.5% of aliphatics and 69% of aromatics in 3% (v/v) of Arabian light crude oil added.

  • PDF

Analysis of Development Trends on Bio-based Environmental Transformers Oils in Power Sector (전력분야의 바이오 기반 친환경 전기 절연유 적용에 관한 개발 동향 분석)

  • Kim, Jae-Kon;Min, YoungJe;Kim, Mock-Yeon;Kwark, ByeongSub;Park, Hyunjoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • Mineral electrical insulating oil, which is widely used in transformers, exhibits excellent cooling performance and transformer efficiency. However, given that it is composed of petroleum-based components, it is weak in terms of biodegradability. This causes environmental problems in case of leakage and a low flash point, which is a factor that would cause great damage in the event of a fire in a substation. In this context, the use of eco-friendly electric insulating oil composed of bio-based vegetable oil and synthetic ester, which has excellent biodegradability and flame retardancy performance, has recently been expanded to the field of electric power, and various research and development (R&D) studies are in progress. According to different research results, vegetable oil and synthetic ester manufacturing technology, thermal stability, oxidation stability, property change, and quality control, which are characteristics of eco-friendly electrical insulating oils, are major factors affecting the maintenance of insulating oil properties. In addition, power companies have established and operated quality control standards according to the use of eco-friendly electrical insulating oil as they expand the exploitatoin of renewable energy in electricity production. In particular, deterioration and oxidation characteristics were jointly identified in R&D as an important influencing factor according to the content of saturated and unsaturated fatty acids present in vegetable oils and synthetic esters in power transformer applications.