DOI QR코드

DOI QR Code

An oil-tolerant and salt-resistant aqueous foam system for heavy oil transportation

  • Sun, Jie (School of Oil & Natural Gas Engineering, Southwest Petroleum University) ;
  • Jing, Jiaqiang (School of Oil & Natural Gas Engineering, Southwest Petroleum University) ;
  • Brauner, Neima (Department of Fluid Mechanics, Faculty of Engineering, Tel-Aviv University) ;
  • Han, Li (Engineering Technology Research Institute, Xinjiang Oilfield Company) ;
  • Ullmann, Amos (Department of Fluid Mechanics, Faculty of Engineering, Tel-Aviv University)
  • Received : 2018.04.30
  • Accepted : 2018.07.24
  • Published : 2018.12.25

Abstract

An oil-tolerant and salt-resistant aqueous foam system was screened out as a possible lubricant to enable cold heavy oil transportation. The microstructures and viscoelasticity and effects of heavy oil, salt and temperature on the foam stability were investigated and new rheological and drainage models were established. The results indicate the foam with multilayered shells belongs to a special microcellular foam. The viscoelasticity could be neglected due to its low relaxation time. The drainage process can be divided into three stages. The foam with quality of 67.9% maintains great stability at high oil and salt concentrations and appropriate elevated temperature.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. R. Martinez-Palou, M.L. Mosqueira, B. Zapata-Rendon, E. Mar-Juarez, C. Bernal-Huicochea, J.C. Clavel-Lopez, J. Aburto, J. Pet. Sci. Technol. 75 (2011) 274.
  2. J. Ni, X. Zhou, Q. Yuan, X. Lu, F. Zeng, K. Wu, Energies 10 (2017) 1.
  3. Y. He, S. Cheng, L. Li, G. Mu, T. Zhang, H. Xu, J. Qin, H. Yu, SPE Reserv. Eval. Eng. 20 (2016) 708.
  4. Y. Lin, K. Deng, Y. Sun, D. Zeng, T. Xia, Pet. Explor. Dev. 43 (2016) 506. https://doi.org/10.1016/S1876-3804(16)30059-3
  5. J. Jing, J. Sun, J. Tan, M. Huang, Q. Liang, T. Xue, Exp. Therm Fluid Sci. 72 (2016) 88. https://doi.org/10.1016/j.expthermflusci.2015.10.022
  6. J.G. Weissman, R.V. Kessler, R.A. Sawicki, J.D.M. Belgrave, C.J. Laureshen, S.A. Mehta, R.G. Moore, M.G. Ursenbach, Energy Fuel. 10 (1996) 883. https://doi.org/10.1021/ef9501814
  7. A. Saniere, I. Henaut, J.F. Argillier, Oil Gas Sci. Technol. 59 (2004) 511. https://doi.org/10.2516/ogst:2004036
  8. S.N. Ashrafizadeh, M. Kamran, J. Pet. Sci. Eng. 71 (2010) 205. https://doi.org/10.1016/j.petrol.2010.02.005
  9. N.H. Abdurahman, Y.M. Rosli, N.H. Azhari, J. Pet. Sci. Eng. 90-91 (2012) 139. https://doi.org/10.1016/j.petrol.2012.04.025
  10. Y. Peysson, A. Bensakhria, G. Antonini, J.F. Argillier, SPE Reservoir Eval. Eng 22 (2007) 135.
  11. A. Hart, J. Pet. Explor. Prod. Technol. 4 (2014) 327. https://doi.org/10.1007/s13202-013-0086-6
  12. W.S. Ho, N.N. Li, AIChE J 40 (1994) 1961. https://doi.org/10.1002/aic.690401205
  13. J.W.V. Prada, A.C. Bannwart, J. Energy Res. ASME 123 (2001) 194.
  14. A. Bensakhria, Y. Peysson, G. Antonini, Oil Gas Sci. Technol. 59 (2004) 523. https://doi.org/10.2516/ogst:2004037
  15. J.R. Herrera, B. Mena, C.A. Romo, O. Manero, Pet. Sci. Technol. 4 (2009) 1466.
  16. X. Luo, G. Lu, W. Zhang, L. He, Y. Lu, Exp. Therm Fluid Sci. 82 (2017) 174. https://doi.org/10.1016/j.expthermflusci.2016.11.015
  17. E. Guevara, J. Gonzalez, G. Ninez, Proc. 15th World Pet. Congr. (1997).
  18. D.D. Joseph, R. Bai, K. Chen, Y.Y. Renardy, Annu. Rev. Fluid Mech. 29 (1997) 65. https://doi.org/10.1146/annurev.fluid.29.1.65
  19. A. Saxema, A.K. Pathak, K. Ojha, Braz. J. Pet. Gas 8 (2014) 57. https://doi.org/10.5419/bjpg2014-0005
  20. D. Glosser, B. Kutchko, G. Benge, D. Crandall, M.T. Ley, J. Pet. Sci. Eng. 145 (2016) 66. https://doi.org/10.1016/j.petrol.2016.03.014
  21. S. Li, Z. Li, B. Li, J. Pet. Sci. Eng. 118 (2014) 88. https://doi.org/10.1016/j.petrol.2014.04.009
  22. Q. You, Y. Wang, W. Zhou, Z. Qi, F. Zhao, J. Can. Pet. Technol. 48 (2009) 51.
  23. Y. Zhang, Y. Wang, F. Xue, Y. Wang, B. Ren, L. Zhang, S. Ren, J. Pet. Sci. Eng. 133 (2015) 838. https://doi.org/10.1016/j.petrol.2015.04.003
  24. J. Jing, N. Duan, K. Dai, J. Tan, P. Jing, Y. Li, J. Sun, Y. Zhou, J. Pet. Sci. Eng. 124 (2014) 83. https://doi.org/10.1016/j.petrol.2014.10.018
  25. J. Jing, Y. Zhou, N. Duan, J. Sun, X. Li, Chin. Sci. Bull. 60 (2015) 681. https://doi.org/10.1360/N972014-01010
  26. J. Jing, J. Sun, H. Zhao, N. Duan, Y. Zhou, Q. Xu, CIESC J. 65 (2014) 4301.
  27. J. Sun, J. Jing, P. Jing, N. Duan, C. Wu, J. Tan, J. Pet. Sci. Eng. 146 (2016) 409. https://doi.org/10.1016/j.petrol.2016.06.011
  28. M. Simjoo, T. Rezaei, A. Andrianov, P.L.J. Zitha, Colloids Surf., A 438 (2013) 148. https://doi.org/10.1016/j.colsurfa.2013.05.062
  29. J. Sun, J. Jing, C. Wu, F. Xiao, X. Luo, J. Ind. Eng. Chem. 44 (2016) 126. https://doi.org/10.1016/j.jiec.2016.08.019
  30. X. Duan, J. Hou, T. Cheng, S. Li, Y. Ma, J. Pet. Sci. Eng. 122 (2014) 428. https://doi.org/10.1016/j.petrol.2014.07.042
  31. L. Ezhilarasan, Mater. Sci. 15 (2014) 572.
  32. G. Lu, Q. Yan, C. Ge, Polym. Int. 56 (2010) 1016.
  33. Y. Sheng, S. Lu, M. Xu, X. Wu, C. Li, J. Dispersion Sci. Technol. 37 (2016) 1664. https://doi.org/10.1080/01932691.2015.1124341
  34. Z. Chen, R.M. Ahmed, S.Z. Miska, N.E. Takach, M. Yu, M.B. Pichell, SPE J. 12 (2005) 100.
  35. S.I. Karakashev, A.V. Nguyen, Colloids Surf., A 293 (2007) 229. https://doi.org/10.1016/j.colsurfa.2006.07.047
  36. J. Jing, J. Sun, M. Zhang, C. Wang, X. Xiong, K. Hu, RSC Adv. 7 (2017) 39258. https://doi.org/10.1039/C7RA06799B
  37. R.E. Blauer, C.J. Durborow, U.S. Pat. No. 393 7283, 1974.
  38. D.L. Weaire, S. Hutzler, The Physics of Foams, Clarendon Press, Oxford University, 1999.
  39. N. Politova, S. Tcholakova, K. Golemanov, N.D. Denkov, M. Vethamuthu, K.P. Ananthapadmanabhan, Langmuir 28 (2012) 1115. https://doi.org/10.1021/la2035517
  40. P.J. Carreau, J. Rheol. 16 (1972) 99.
  41. V. Castelletto, I.W. Hamley, W. Xue, C. Sommer, J.S. Pedersen, P.D. Olmsted, Macromolecules 37 (2004) 1492. https://doi.org/10.1021/ma035039d
  42. A. Saintjalmes, Soft Matter 2 (2006) 836. https://doi.org/10.1039/b606780h
  43. Y. Yan, N. Zhang, C. Qu, Z. Yang, L. Liu, Acta Chim. Sinica 63 (2005) 1686.
  44. S.V. Save, V.G. Pangarkar, Chem. Eng. Commun. 127 (1994) 35. https://doi.org/10.1080/00986449408936224
  45. N.V. Churaev, Adv. Colloid Interface Sci. 103 (2003) 197. https://doi.org/10.1016/S0001-8686(02)00074-X
  46. K. Koczo, L.A. Lobo, D.T. Wasan, J. Colloid Interface Sci. 150 (1992) 492. https://doi.org/10.1016/0021-9797(92)90218-B
  47. A.K. Vikingstad, A. Skauge, H. Hoiland, M.G. Aarra, Colloids Surf., A 260 (2005) 189. https://doi.org/10.1016/j.colsurfa.2005.02.034
  48. A.K. Vikingstad, M.G. Aarra, A. Skauge, Colloid Surf., A 279 (2006) 105. https://doi.org/10.1016/j.colsurfa.2005.12.047
  49. M. Abe, K. Kato, K. Ogino, J. Colloid Interface Sci. 127 (1989) 328. https://doi.org/10.1016/0021-9797(89)90038-6

Cited by

  1. A Novel Approach to Stabilize Foam Using Fluorinated Surfactants vol.12, pp.6, 2019, https://doi.org/10.3390/en12061163
  2. Facilitating the transportation of highly viscous oil by aqueous foam injection vol.251, pp.None, 2019, https://doi.org/10.1016/j.fuel.2019.03.116
  3. Rheological behavior of heavy crude oil and its emulsions vol.38, pp.5, 2018, https://doi.org/10.1080/10916466.2020.1727502
  4. Investigation on drag reduction of aqueous foam for transporting thermally produced high viscosity oil vol.210, pp.None, 2018, https://doi.org/10.1016/j.petrol.2021.110062