DOI QR코드

DOI QR Code

Study on Pyrolysis Characteristics for Upgrading of Bitumen-Like Heavy Oil Contained in Indonesian Resources

인도네시아산 자원 내에 포함된 역청성 오일의 경질화를 위한 열분해 특성에 관한 연구

  • Jang, Jung Hee (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Han, Gi Bo (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Park, Cheon-kyu (Petroleum Technology R&D Center, Korea Institute of Petroleum Management) ;
  • Jeon, Cheol-Hwan (Petroleum Technology R&D Center, Korea Institute of Petroleum Management) ;
  • Kim, Jae-Kon (Petroleum Technology R&D Center, Korea Institute of Petroleum Management) ;
  • Kwak, Hyun (R&D Center, Hanwoul Engineering Co., Ltd.)
  • 장정희 (고등기술연구원 플랜트엔지니어링센터) ;
  • 한기보 (고등기술연구원 플랜트엔지니어링센터) ;
  • 박천규 (한국석유관리원 석유기술연구소) ;
  • 전철환 (한국석유관리원 석유기술연구소) ;
  • 김재곤 (한국석유관리원 석유기술연구소) ;
  • 곽현 ((주)한울엔지니어링 기술연구소)
  • Received : 2016.08.16
  • Accepted : 2016.10.01
  • Published : 2016.12.30

Abstract

In this study, the pyrolysis process was carried out in order to upgrade of heavy oil contained in the resources from Indonesia. In order to investigate the composition and basic properties of the heavy oil contained in the resources, the various analytical methods was used and then the TGA (thermogravimetric) method was especially used for the thermal degradation characteristics of heavy oil in the pyrolysis. From the results obtained from the various analytical methods, the reaction conditions such as the reaction temperature was collected for the pyrolysis process and the pyrolysis using the resources containing the heavy oil was conducted using the fixed-bed reactor under the various reaction conditions. Consequently, We found that the content of heavy oil contained in the resources was about 35% and the conversion of heavy oil and the recovery efficiency of thermal degradation oil were about 21 and 80%, respectively.

본 연구에서는 인도네시아 현지로부터 수급된 지층 자원에 포함된 역청성 오일의 경질화를 위하여 열분해 공정이 적용되었다. 이러한 자원 내에 포함된 역청성 오일에 대한 조성 및 기초성상을 조사하기 위하여 공업분석, 원소분석 등이 수행되었으며, 열중량분석을 통해 역청성 오일의 전환에 대한 열분해반응 기초특성이 조사되었다. 이러한 결과를 바탕으로 원료 내에 포함된 역청성 오일을 경질화하기 위하여 필요한 열분해 온도 등의 운전조건 범위가 선정되었으며, 실험실 규모의 고정층 반응기를 이용하여 반응온도에 따른 역청성 오일의 전환율 및 열분해 오일의 회수율을 확인하였다. $550^{\circ}C$에서 수행된 열분해 공정에서 원료 내 포함된 역청성 오일의 전환율은 약 21%였으며, 경질화된 열분해 오일의 회수율은 약 80%였다.

Keywords

References

  1. Chengzao, J., Min, Z., and Yongfeng, Z., "Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development," Petrol. Explor. Develop., 39, 139-146 (2012). https://doi.org/10.1016/S1876-3804(12)60026-3
  2. Masliyah, J., Zhou, Z. J., Xu, Z., Czarnecki, J., and Hamza, H., "Understanding Water-Based Bitumen Extraction from Athabasca Oil Sands," Can. J. Chem. Eng., 82, 628-654 (2004).
  3. Meng, M., "Extraction of Organic Substance from Tumuji Oil Sand," Ph. D. Dissertation Dalian University of Technology, Dalian (2007).
  4. Dai, Q., and Chung, K. H., "Hot Water Extraction Process Mechanism using Model Oil Sands," Fuel, 75, 220-226 (1996). https://doi.org/10.1016/0016-2361(95)00218-9
  5. Liu, Q., Cui, Z., and Etsell, T. H., "Characterization of Athabasca Oil Sands Froth Treatment Tailings for Heavy Mineral Recovery," Fuel, 85, 807-814 (2006). https://doi.org/10.1016/j.fuel.2005.08.032
  6. Allen, E. W., "Process Water Treatment in Canada's Oil Sands Industry: I. Target Pollutants and Treatment Objectives," J. Environ. Eng. Sci., 7, 123-138 (2008). https://doi.org/10.1139/S07-038
  7. Cha, S., Hanson, F. V., Longstaff, D. C., and Oblad, A. G., "Pyrolysis of Bitumen-Impregnated Sandstones: a Comparison Of Fluidized Bed and Rotary Kiln Reactors," Fuel, 70, 1357-1361 (1991). https://doi.org/10.1016/0016-2361(91)90229-4
  8. Meng, M., Hu, H., Zhang, Q., Li, X., and Wu, B., "Pyrolysis Behaviors of Tumuji Oil Sand by Thermogravimetry (TG) and in a Fixed Bed Reactor," Energy Fuels, 21, 2245-2249 (2007). https://doi.org/10.1021/ef070048z
  9. Hanson, F. V., Cha, S. M., Deo, M. D., and Oblad, A. G., "Pyrolysis of Oil Sand from the Whiterocks Deposit in a Rotary Kiln," Fuel, 71, 1455-1463 (1992). https://doi.org/10.1016/0016-2361(92)90219-E
  10. Fletcher, J. V., Deo, M. D., and Hanson, F. V., "Fluidized Bed Pyrolysis of a Uinta Basin Oil Sand," Fuel, 74, 311-316 (1995). https://doi.org/10.1016/0016-2361(95)93461-L
  11. Perezlepe, A., "Influence of the Processing Conditions on the Rheological Behaviour of Polymer-Modified Bitumen," Fuel, 82, 1339-1348 (2003). https://doi.org/10.1016/S0016-2361(03)00065-6
  12. Masliyah, J., Zhou, Z. J., Xu, Z., Czarnecki, J., and Hamza, H., "Understanding Water-Based Bitumen Extraction from Athabasca Oil Sands." The Canadian J. Chem. Eng., 82, 628-654 (2004).
  13. Dai, Q., and Chung, K. H., "Hot Water Extraction Process Mechanism using Model Oil Sands," Fuel, 75, 220-226 (1996). https://doi.org/10.1016/0016-2361(95)00218-9
  14. Liu, Q., Cui, Z., and Etsell, T. H., "Characterization of Athabasca Oil Sands Froth Treatment Tailings for Heavy Mineral Recovery," Fuel, 85, 807-814 (2006). https://doi.org/10.1016/j.fuel.2005.08.032
  15. Jia, C., Wang, Q., Ge, J., and Xu, X., "Pyrolysis and Combustion Model of Oil Sands from Non-Isothermal Thermogravimetric Analysis Data," J. Therm. Anal. Calorim., 116, 1073 (2014). https://doi.org/10.1007/s10973-013-3591-4
  16. Al-Otoom, A., Al-Harahsheh, M., Allawzi, M., Kingman, S., Robinson, J., Al-Harahsheh, A., and Saeid, A., "Physical and thermal properties of Jordanian tar sand," Fuel Proc. Technol., 106, 174 (2013). https://doi.org/10.1016/j.fuproc.2012.07.021