• Title/Summary/Keyword: pervaporation membrane reactor

Search Result 11, Processing Time 0.018 seconds

Removal of acetic acid from wastewater by esterification in the membrane reactor

  • Unlu, Derya;Hilmioglu, Nilufer Durmaz
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.143-154
    • /
    • 2016
  • Acetic acid can be removed from wastewater by esterification in a membrane reactor. Pervaporation membrane reactor (PVMR) is an alternative process to conventional separation processes. It is an environmentally friendly process. The main advantages of the PVMR are simultaneous water removal and production of an ester economically. In this study, the synthetic wastewater has been used. Esterification reaction of acetic acid with isopropanol has been studied in the presence of tungstosilicic acid hydrate as a catalyst in a batch reactor and in a PVMR. The effects of important operating parameters such as reaction temperature, initial molar ratio of isopropanol to acetic acid and catalyst concentration has been examined. Removal of acetic acid (conversion of acetic acid) was obtained as 85% using a PVMR by removal of water from the reaction mixture.

Simultaneous Saccharification and Pervaporative Fermentation of Cellulosic Biomass (투고증발을 이용한 섬유성바이오매스의 동시당화 및 추출발효)

  • 공창범;윤현희
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.38-43
    • /
    • 1998
  • Application of pervaporative extraction of ethanol to simultaneous saccharification and fermentation(SSF) of cellulose was investigated. From batch experiments, optimum cellulose substrate and enzyme loadings were found to be 10% and 15 IFPU/g cellulose, respectively. The cellulose conversion was lowered in fed-batch system due to the ethanol accumulation. The activity of the yeast Saccharomyces uvarum used in this study was significantly reduced at ethanol concentrations above around 40 g/L. From pervaporation experiments using PDMS membrane, ethanol was efficiently separated at 38$^\circ C$ and 10 mmHg of a down stream pressure. The pervaporation unit with 240 cm$^2$ of surface area was combined into the SSF reactor. The continuous removal of ethanol by pervaporation during SSF resulted in an improved cellulose conversion. Within the scope of this experiment, ethanol yields in the pervaporative SSF and simple SSF were 68.3% and 56.6%, respectively. The permeate flux for SSF broth pervaporation was about one-half that for the pervaporation of aqueous ethanol solution. Accordingly, the development of a membrane with higher ethanol selectivity and flux will increase the feasibility of this technology.

  • PDF

A Characterization of Pervaporation-facilitated Esterification Reaction with non-perfect Separation (비완전 막분리시 투과증발 막촉진 에스터화 반응 거동 연구)

  • C. K Yeom;F. U. Baig
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.268-282
    • /
    • 2003
  • Pervaporation-facilitated esterification with slow reaction regime was characterized by using a practical model based on non-perfect separation through membrane. A non-perfect separation in which the membrane is not perfectly permselective to water was applied to the model. Thus, membrane selectivity and membrane capability to remove water were included in the simulation model to explain how they influence the membrane-facilitated reaction process and improve the reactor performance. It was shown by simulation that in the reaction systems with non-perfect separation, reaction completion can hardly be achievable when any reactant at initial molar ratio=1 or the less abundant reactant at initial molar ratio>1 permeates through membrane, and the permeation of ester accelerates the forward reaction md increase reaction conversion at any instant through removal of product species like water. The volume change causes concentrating both reactants and products that affect the reaction with time in opposite ways; reactant-concentrating effect is dominant during the initial stage of reaction, increasing the reaction rate, and then concentrating product influences more reaction by decreasing the reaction rate.

A Parametric Study of Pervaporation-facilitated Esterification (전산모델링을 통한 투과증발-촉진 에스테르화 반응에 대한 연구)

  • Yeom, C.K.;Choi, Seung-Hak;Park, You-In;Chang, Sung-Soon
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.146-160
    • /
    • 2007
  • A parametric study on pervaporation-facilitated esterification was performed by using a practical model based on non-perfect separation through membrane which is not perfectly permselective to water. Thus, membrane selectivity as well as membrane capability to remove water should be taken into account in establishing the simulation model to explain how the membrane separation influence the esterification reaction process. It was shown by simulation that in the reaction systems with non-perfect separation, the permeation of reactants which are acid or/and alcohol retards the reaction by inducing the backward reaction so that reaction conversion curve is located between a reaction system coupled with pervaporation process having a perfect permselectivity to water and a reaction system without pervaporation process. The volume change of reaction system occurs as a result of the permeation through the membrane. The reaction volume change which can be characterized by the reaction ratio of $r_{\Psi}\;to\;r_{{\Psi}=1}$ affects reaction kinetics by concentrating reactants and products, respectively, with different extent with time; reactant-concentrating effect is dominant during the initial stage of reaction, resulting in facilitating the reaction, and then product-concentrating effect is exerted more on reaction, causing to slow down the reaction. When pervaporative dehydration is applied to the reaction system plays an important role in the reaction as well. The effect of timing to impose pervaporation on reaction system affected the reaction kinetics in terms of reaction rate and reaction conversion. A relationship was derived to explain membrane unit capacity and reaction parameters that will be used as a design tool to determine membrane unit capacity at a given reaction conditions or reaction parameters at a membrane unit capacity.

Preparation of novel PVA membranes and their pervaporation properties for esterification membrane reactor of TFEMA (불소화알콜의 에스텔화 막반응기를 위한 새로운 PVA막의 제조와 투과증발특성)

  • 안상만;장봉준;김정훈;이수복;이용택
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.156-159
    • /
    • 2004
  • TFEMA(2,2,2-trifluoroethylmethacrylate)는 광섬유 코팅제, 발수 발유제, 기능성 페인트, 방오가공제, 고분자의 표면개질제 등의 많은 응용제품에 활용되는 단량체로 그 시장규모가 국내에서 600억원, 전 세계에서 8,000억에 해당하는 고부가가치의 화학원료이다. TFEMA는 현재 산촉매하의 8.$0^{\circ}C$의 고온에서 TFEA(2,2,2-trifluoroethaol)와 MA(methacrylic acid)와의 에스텔화 반응으로 제조된다.(중략)

  • PDF

Control of Nano-Structure of Ceramic Membrane and Its Application (세라믹 멤브레인의 나노구조 제어 및 응용)

  • Lee, Hye-Ryeon;Seo, Bong-Kuk;Choi, Yong-Jin
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.77-94
    • /
    • 2012
  • Amorphous ceramic membranes have been developed for gas phase separation and liquid phase separation (water treatment, wastewater treatment and separation of organic solvent or compounds) because of their thermal stability and solvent resistance. In this paper, ceramic membranes were categorized by membrane pore size and materials, and summarized for hydrogen separation, carbon dioxide separation, membrane reactor, pervaporation and water treatment with membrane structure and properties.

Esterification of Fluoroethanol with Methacrylic Acid through Acid-resistant Poly(vinyl alcohol) Pervaporation Membranes (산저항성을 가진 PVA 투과증발막을 이용한 불화에탄올과 메타크릴산의 에스테르화 반응)

  • Kim Jeong-Hoon;Chang Bong-Jun;Lee Yong-Taek;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.230-234
    • /
    • 2006
  • This study discusses an esterification of trifluoroethanol (TFEA) with methacrylic acid (MA) using acid-resistant PVA pervaporation membrane. The acid-resistant PVA membranes, which were prepared via a thermal cross-linking reaction of PVA and EGDE were adopted in the esterification reaction. The effect of reaction conditions such as temperature, acid catalyst content, and initial molar ratio of TFEA/MA was investigated on the conversion of trifluoroethyl-methacrylate (TFEMA). It was found that TFEMA conversion increased with increasing the reaction temperature, the catalyst content, and the initial molar ratio. The economical conversion of TFEMA more than about 90% was obtained at the following reaction conditions: reaction temperature of $90^{\circ}C$, 2.5 wt% of catalyst and initial molar ratio of 1.7.

Pervaporation Separation of fluoroethanol/water Mixtures through Crosslinked Poly(vinyl alcohol) Composite Membranes (가교된 폴리비닐알콜 복합막을 이용한 불화에탄올/물 혼합용액의 투과증발분리 특성)

  • 이수복;안상만;장봉준;김정훈;이용택
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.166-172
    • /
    • 2004
  • As a preliminary study for esterification membrane reactor used to produce 2,2,2-trifluoroethylmetacrylate (TFEMA), Pervaporation behaviors with crosslinked Poly(vinyl alcohol) composite membranes were investigated for aqueous TFEA (2,2,2-trifluoroethanol) feed solutions. In this study, crosslinked PVA composite membranes were prepared by reacting PVA with glutaraldehyde (CA)/acid catalyst onto porous polyethersulfone (PES) supports. SEH images (scanning electron microscopy) showed the thicknesses of selective coating layer was about 2-3 ${\mu}{\textrm}{m}$. The swelling tests showed the dogree of crosslinking decreased as content of the crosslinking agent, GA, increased. Total permeation flux decreased while separation factor increased as the CA content increased. As operating temperature increased, total permeation flux remarkably increased in the range of 85-95 wt% TFEA aqueous solutions. Interestingly, however, separation factor decreased in 85-90 wt% with operating temperature, while that increased in 95 wt%. In case of 90 wt% TFEA concentration and operating temperature 8$0^{\circ}C$, the PVA composite membrane crosslinked with 0.1 mol GA per PVA repeating unit showed high permeation flux of 1.5 kg/$m^2$hr and separation factor of 320. These results confirmed the applicability of the PVA composite membranes for the esterification membrane reactor of TFEMA.