Abstract
Application of pervaporative extraction of ethanol to simultaneous saccharification and fermentation(SSF) of cellulose was investigated. From batch experiments, optimum cellulose substrate and enzyme loadings were found to be 10% and 15 IFPU/g cellulose, respectively. The cellulose conversion was lowered in fed-batch system due to the ethanol accumulation. The activity of the yeast Saccharomyces uvarum used in this study was significantly reduced at ethanol concentrations above around 40 g/L. From pervaporation experiments using PDMS membrane, ethanol was efficiently separated at 38$^\circ C$ and 10 mmHg of a down stream pressure. The pervaporation unit with 240 cm$^2$ of surface area was combined into the SSF reactor. The continuous removal of ethanol by pervaporation during SSF resulted in an improved cellulose conversion. Within the scope of this experiment, ethanol yields in the pervaporative SSF and simple SSF were 68.3% and 56.6%, respectively. The permeate flux for SSF broth pervaporation was about one-half that for the pervaporation of aqueous ethanol solution. Accordingly, the development of a membrane with higher ethanol selectivity and flux will increase the feasibility of this technology.