• 제목/요약/키워드: perturbation solution

검색결과 245건 처리시간 0.011초

Mass perturbation influence method for dynamic analysis of offshore structures

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • 제13권4호
    • /
    • pp.429-436
    • /
    • 2002
  • The current work presents an analysis algorithm for the modal analysis for the dynamic behaviors of offshore structures with concepts of mass perturbation influence term. The mass perturbation concept by using the term, presented in this paper offers an efficient solution procedure for dynamical response problems of offshore structures. The basis of the proposed method is the mass perturbation influence concepts associated with natural frequencies and mode shapes and mass properties of the given structure. The mathematical formulation of the mass perturbation influence method is described. New solution procedures for dynamics analysis are developed, followed by illustrative example problems, which deal with the effectiveness of the new solution procedures for the dynamic analysis of offshore structures. The solution procedures presented herein is compact and computationally simple.

SOLUTION OF A NONLINEAR EQUATION WITH RIEMANN-LIOUVILLES FRACTIONAL DERIVATIVES BY HOMOTOPY PERTURBATION METHOD

  • Mohyud-Din, Syed Tauseef;Yildirim, Ahmet
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.55-60
    • /
    • 2011
  • The aim of the paper is to apply Homotopy Perturbation Method (HPM) for the solution of a nonlinear fractional differential equation. Finally, the solution obtained by the Homotopy perturbation method has been numerically evaluated and presented in the form of tables and then compared with those obtained by truncated series method. A good agreement of the results is observed.

PERTURBATION ANAYSIS FOR THE MATRIX EQUATION X = I - A*X-1A + B*X-1B

  • Lee, Hosoo
    • Korean Journal of Mathematics
    • /
    • 제22권1호
    • /
    • pp.123-131
    • /
    • 2014
  • The purpose of this paper is to study the perturbation analysis of the matrix equation $X=I-A^*X^{-1}A+B^*X^{-1}B$. Based on the matrix differentiation, we give a precise perturbation bound for the positive definite solution. A numerical example is presented to illustrate the shrpness of the perturbation bound.

Study of Diffusion Controlled Reactions in Liquids: A Perturbation Series Solution and a Numerical Solution of the Smoluchowski Equations

  • Mino Yang;Sangyoub Lee;Kim Yung Sik;Kook Joe Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권6호
    • /
    • pp.529-535
    • /
    • 1989
  • A general perturbation series solution of the Smoluchowski equation is applied to investigate the rate of recombination and the remaining probability of a pair of particles in liquids. The radiative boundary condition is employed and the convergence of the perturbation series is analyzed in terms of a convergene factor in time domain. The upper bound to the error introduced by the n-th order perturbation scheme is also evaluated. The long time behaviors of the rate of recombination and the remaining probability are found to be expressed in closed forms if the perturbation series is convergent. A new and efficient method of purely numerical integration of the Smoluchowski equation is proposed and its results are compared with those obtained by the perturbation method. For the two cases where the interaction between the particles is given by (i) the Coulomb potential and (ii) the shielded Coulomb potential, the agreement between the two results is found to be excellent.

A Study on the Generation of Capillary Waves on Steep Gravity Waves

  • Lee, Seung-Joon
    • Journal of Ship and Ocean Technology
    • /
    • 제4권4호
    • /
    • pp.45-55
    • /
    • 2000
  • A formal solution method using the complex analysis is given for the problems derived by Longuet-Higgins(1963). The same method is applied to a new perturbation problem of higher approximation. Interpretation of its solution made it possible to confirm that the rough agree-ment of Longuet-Higgins\`s prediction with experimental data of Cox(1958) was mainly due to the fact that the gravity effect in the perturbation problem was neglected for the case when the basic gravity wave not sufficiently steep.

  • PDF

THE CONVERGENCE OF HOMOTOPY METHODS FOR NONLINEAR KLEIN-GORDON EQUATION

  • Behzadi, Shadan Sadigh
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1227-1237
    • /
    • 2010
  • In this paper, a Klein-Gordon equation is solved by using the homotopy analysis method (HAM), homotopy perturbation method (HPM) and modified homotopy perturbation method (MHPM). The approximation solution of this equation is calculated in the form of series which its components are computed easily. The uniqueness of the solution and the convergence of the proposed methods are proved. The accuracy of these methods are compared by solving an example.

The analytic solution for parametrically excited oscillators of complex variable in nonlinear dynamic systems under harmonic loading

  • Bayat, Mahdi;Bayat, Mahmoud;Pakar, Iman
    • Steel and Composite Structures
    • /
    • 제17권1호
    • /
    • pp.123-131
    • /
    • 2014
  • In this paper we have considered the vibration of parametrically excited oscillator with strong cubic positive nonlinearity of complex variable in nonlinear dynamic systems with forcing based on Mathieu-Duffing equation. A new analytical approach called homotopy perturbation has been utilized to obtain the analytical solution for the problem. Runge-Kutta's algorithm is also presented as our numerical solution. Some comparisons between the results obtained by the homotopy perturbation method and Runge-Kutta algorithm are shown to show the accuracy of the proposed method. In has been indicated that the homotopy perturbation shows an excellent approximations comparing the numerical one.

A SYSTEM OF NONLINEAR PROJECTION EQUATIONS WITH PERTURBATION IN HILBERT SPACES

  • Zhou, Li-Wen;Cho, Yeol-Je;Huang, Nan-Jing
    • East Asian mathematical journal
    • /
    • 제24권2호
    • /
    • pp.191-199
    • /
    • 2008
  • In this paper, we introduce and studied a system of nonlinear projection equations with perturbation in Hilbert spaces. By using the fixed point theorem, we prove an existence of solution for this system of nonlinear projection equations. We construct an algorithm for approximating the solution of the system of nonlinear projection equations with perturbation and show that the iterative sequence generated by the algorithm converges to the solution of the system of nonlinear projection equations with perturbation under some suitable conditions.

  • PDF

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

ANALYTICAL SOLUTION OF SINGULAR FOURTH ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS OF VARIABLE COEFFICIENTS BY USING HOMOTOPY PERTURBATION TRANSFORM METHOD

  • Gupta, V.G.;Gupta, Sumit
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.165-177
    • /
    • 2013
  • In this paper, we apply Homotopy perturbation transform method (HPTM) for solving singular fourth order parabolic partial differential equations with variable coefficients. This method is the combination of the Laplace transform method and Homotopy perturbation method. The nonlinear terms can be easily handled by the use of He's polynomials. The aim of using the Laplace transform is to overcome the deficiency that is mainly caused by unsatisfied conditions in other semi-analytical methods such as Homotopy perturbation method (HPM), Variational iteration method (VIM) and Adomain Decomposition method (ADM). The proposed scheme finds the solutions without any discretization or restrictive assumptions and avoids the round-off errors. The comparison shows a precise agreement between the results and introduces this method as an applicable one which it needs fewer computations and is much easier and more convenient than others, so it can be widely used in engineering too.