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ANALYTICAL SOLUTION OF SINGULAR FOURTH ORDER

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS OF

VARIABLE COEFFICIENTS BY USING HOMOTOPY

PERTURBATION TRANSFORM METHOD

V.G. GUPTA AND SUMIT GUPTA∗

Abstract. In this paper, we apply Homotopy perturbation transform
method (HPTM) for solving singular fourth order parabolic partial dif-
ferential equations with variable coefficients. This method is the combina-

tion of the Laplace transform method and Homotopy perturbation method.
The nonlinear terms can be easily handled by the use of He’s polynomi-
als. The aim of using the Laplace transform is to overcome the deficiency
that is mainly caused by unsatisfied conditions in other semi-analytical

methods such as Homotopy perturbation method (HPM), Variational it-
eration method (VIM) and Adomain Decomposition method (ADM). The
proposed scheme finds the solutions without any discretization or restric-
tive assumptions and avoids the round-off errors. The comparison shows

a precise agreement between the results and introduces this method as an
applicable one which it needs fewer computations and is much easier and
more convenient than others, so it can be widely used in engineering too.

AMS Mathematics Subject Classification : 35J05, 65M15.

Key words and phrases : Homotopy perturbation method, Laplace Trans-
form Method, Fourth-order parabolic equations, He’s Polynomials, Ana-
lytical Solution.

1. Introduction

Analytical methods have made a comeback in research methodology after
taking a backseat to the numerical techniques for the latter half of the preceding
century. The advantages of analytical methods are manifolds, the main being
that they give a much better insight than the numbers crunched by a computer
using a purely numerical algorithm. Many such physical phenomena are modeled

Received July 14, 2011. Revised April 29, 2012. Accepted September 24, 2012. ∗Corresponding

author.

c⃝ 2013 Korean SIGCAM and KSCAM.

165



166 V.G. Gupta and Sumit Gupta

in terms of partial differential equations. For example, the parabolic equations
with variable coefficients which are of the form:

∂2u

∂t2
+µ(x, y, z)

∂4u

∂x4
+λ(x, y, z)

∂4u

∂y4
+η(x, y, z)

∂4u

∂z4
= g(x, y, z, t), a < x, y, z < b, t > 0

where µ(x, y, z), λ(x, y, z)and η(x, y, z) are positive. subject to the following
initial conditions

u(x, y, z, 0) = f0(x, y, z),
∂u

∂t
(x, y, z, 0) = f1(x, y, z)

u(a, y, z, t) = g0(y, z, t), u(b, y, z, t) = g1(y, z, t),

u(x, a, z, t) = k0(x, z, t), u(b, y, z, t) = k1(x, z, t),

u(x, y, a, t) = h0(y, z, t), u(x, y, b, t) = h1(y, z, t),

∂2u

∂x2
(a, y, z, t) = ḡ0(y, z, t),

∂2u

∂x2
(b, y, z, t) = ḡ1(y, z, t)

∂2u

∂y2
(x, a, z, t) = k̄0(x, z, t),

∂2u

∂y2
(x, b, z, t) = k̄1(x, z, t)

∂2u

∂z2
(x, y, a, t) = h̄0(x, y, t),

∂2u

∂z2
(x, y, b, t) = h̄1(x, y, t)

where ki, gi, hi, k̄i, ḡi, h̄i, i = 0, 1 are continuous, µ(x, y, z) > 0 is the ratio of
flexural rigidity [21-22] of the beam to its mass per unit length, arise in various
fields of physics, engineering and applied sciences. The importance of obtaining
the exact or approximate solutions of linear and nonlinear partial differential
equations in physics and mathematics is still a significant problem thats needs
new methods to discover exact or approximate solutions. Most new nonlinear
equations do-not have a precise analytic solution; so numerical methods have
largely been used to handle these equation. In recent years, many authors have
paid attention to studying the solutions of nonlinear partial differential equa-
tions by various methods. Among these are Adomain Decomposition method
[1-4], the tanh-method [5], the sine-cosine method [6-7], the differential trans-
form method [8-9], the Variational iteration method [10-15] and the Laplace
decomposition method [16-20]. Singular fourth-order parabolic partial differen-
tial equations govern the transverse vibrations of a homogeneous beam. Such
types of equations arise in mathematical modeling of viscoelastic and inelastic
flows, deformation of beams and plate deflection theory. The studies of such
problems have attracted the attention of many mathematicians and physicists
[21-32]. Several techniques including the Adomain Decomposition method ,the
variational iteration method and Laplace decomposition method can be used
to solve the nonhomogeneous variable coefficients partial differential equations
with accurate approximation, but this approximation acceptable only for a small
range, because, boundary condition in one dimension are satisfied via these meth-
ods. Therefore unsatisfied conditions play no roles in the final results. Conse-
quently, this shows that most of these semi-analytical methods encounter the
inbuilt deficiencies like the calculation of Adomain’s polynomials, involve huge
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computational work and divergent results. One of the analytical methods of re-
cent vintage, namely the homotopy perturbation method (HPM), first proposed
by He [33-42] by combining the standard homotopy and classical perturbation
technique for solving various linear, nonlinear initial and boundary value prob-
lems [43-53]. The Laplace transform is totally incapable of handling nonlinear
equations because of the difficulties that are caused by the nonlinear terms. Var-
ious ways have been proposed recently to deal these such nonlinearities such as
the Adomain decomposition method [54], Homotopy perturbation method [55]
and Homotopy perturbation method with Variational iteration method [56] to
produce highly effective techniques for solving many nonlinear problems.

The basic motivation of this paper is to propose a new modification of HPM
to overcome the deficiency. The suggested HPTM provides the solution in a
rapid convergent series which may leads the solution in closed form. The ad-
vantage of this method is its capability of combining two powerful methods for
obtaining exact solution for nonlinear equations. The use of He’s polynomials
in nonlinear terms first proposed by Ghorbani [57-58].The HPTM method has
been successfully introduced by Y. Khan and Q. Wu [59] to homogeneous and
nonhomogeneous advection equations. It is worth mentioning that the HPTM is
applied without any discretization or restrictive assumptions or transformations
and free from round-off errors. Unlike the method of separation of variables
that require initial or boundary conditions, The HPTM provides an analyti-
cal solution by using the initial conditions only. The boundary conditions can
be used only to justify the obtained results. The proposed method work effi-
ciently and the results so far are very encouraging and reliable. We would like
to emphasize that the HPTM may be considered as an important and signif-
icant refinement of the previously developed techniques and can be viewed as
an alternative to the recently developed methods such as Adomain’s decomposi-
tion method, Variational iteration method and Homotopy perturbation method.
Several examples are given to verify the reliability and efficiency of the homotopy
perturbation transform method. In this paper we have considered the effective-
ness of the homotopy perturbation transform method (HPTM) for solving fourth
order parabolic partial differential equations with variable coefficients.

2. Homotopy perturbation transform method

This method was introduced by Y. Khan and Q. Wu [59] by combining the
Homotopy Perturbation Method and Laplace Transform Method for solving var-
ious types of linear and nonlinear systems of partial differential equations. To
illustrate the basic idea of HPTM, we consider a general nonlinear partial dif-
ferential equation with the initial conditions of the form [59].

Du(x, t) +Ru(x, t) +Nu(x, t) = g(x, t) (1)

where D is the second order linear differential operator D = ∂2/∂t2 , R is
the linear differential operator of less order than D; N represents the general
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nonlinear differential operator and g(x, t) is the source term. Taking the Laplace
transform (denoted in this paper by L ) on both sides of Eq. (1):

L[Du(x, t)] + L[Ru(x, t)] + L[Nu(x, t)] = L[g(x, t)] (2)

Using the differentiation property of the Laplace transform, we have

L[u(x, t)] =
h(x)

s
+

f(x)

s2
− L[Ru(x, t)]

s2
+

L[g(x, t)]

s2
− L[Nu(x, t)]

s2
(3)

Operating with the Laplace inverse on both sides of Eq. (3) gives

u(x, t) = G(x, t)− L−1

[
L[Ru(x, t)] + L[Nu(x, t)]

s2

]
(4)

whereG(x, t) represents the term arising from the source term and the prescribed
initial conditions. Now we apply the homotopy perturbation method.

u(x, t) =
∞∑
n=0

pnun(x, t) (5)

and the nonlinear term can be decomposed as

Nu(x, t) =
∞∑
n=0

pnHn(u) (6)

for some He’s polynomials Hn(u) (see [57-58]) that are given by

Hn (u0, u1, . . . un) =
1

n!

∂n

∂pn

[
N

( ∞∑
i=0

piui

)]
p=0

, n = 0, 1, 2, . . . (7)

Substituting Eq.(5), Eq.(6) and Eq.(7) into Eq.(4), we get

∞∑
n=0

pnun(x, t) = G(x, t)− p

(
L−1

[
1

s2
L

[
R

∞∑
n=0

pnun(x, t) +N

∞∑
n=0

pnHn(u)

]])
(8)

which is the coupling of the Laplace transform method and the homotopy per-
turbation method using He’s polynomials. Comparing the coefficient of like
powers of p, the following approximations are obtained.

p0 : u0(x, t) = G(x, t),

p1 : u1(x, t) = − 1

s2
L [Ru0(x, t) +H0(u)] ,

p2 : u2(x, t) = − 1

s2
L [Ru1(x, t) +H1(u)] , (9)

p3 : u3(x, t) = − 1

s2
L [Ru2(x, t) +H2(u)] ,

...

and so on.
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3. Application

In this section we will present some examples to access the efficiency of the
Homotopy perturbation transform method (HPTM).

Example 3.1. First we consider the following parabolic partial differential
equation [21-32].

∂2u

∂t2
+

(
1

x
+

x4

120

)
∂4u

∂x4
= 0,

1

2
< x < 1, t > 0 (10)

with the initial conditions:

u(x, 0) = 0,
∂u

∂t
(x, 0) = 1 +

x5

120

and the boundary conditions:

u

(
1

2
, t

)
=

(
1 +

(0.5)5

120

)
sin(t), u (1, t) =

(
1 +

121

120

)
sin(t)

∂2u

∂x2

(
1

2
, t

)
=

1

6

(
1

2

)3

sin(t),
∂2u

∂x2
(1, t) =

1

6
sin(t)

Taking Laplace Transform both of sides of Eq. (10) subject to the initial condi-
tions, we have

L[u(x, t)] =
1

s2

(
1 +

x5

120

)
− 1

s2
L

[(
1

x
+

x4

120

)
uxxxx

]
(11)

Taking Inverse Laplace transform of Eq.(11), we have

[u(x, t)] =

(
1 +

x5

120

)
− L−1

[
1

s2
L

[(
1

x
+

x4

120

)
uxxxx

]]
(12)

By homotopy perturbation method, we have

u(x, t) =
∞∑
n=0

pnun(x, t) (13)

Substituting Eq.(13) into Eq.(12), we have
∞∑

n=0

pnun(x, t) =

(
1 +

x5

120

)
− p.L−1

[
1

s2
L

[(
1

x
+

x4

120

)( ∞∑
n=0

pnun(x, t)

)
xxxx

]]
(14)

Comparing the coefficient of like powers of p

p0 : u0(x, t) =

(
1 +

x5

120

)
,

p1 : u1(x, t) =

(
1 +

x5

120

)(
−t3

6

)
,

p2 : u2(x, t) =

(
1 +

x5

120

)(
t5

120

)
,
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p3 : u3(x, t) =

(
1 +

x5

120

)(
−t7

5040

)
,

...

and so on. Therefore the approximate solution is given by

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...

u(x, t) =

(
1 +

x5

120

)
sin(t) (15)

which is the exact solution. The results of the above example shows that our
method is capable of reducing the huge computational work and generates the
modification of homotopy perturbation method in the convergence rate and is
same as obtained by the implicit and explicit methods [21, 23-27], the Varia-
tional iteration method [28, 29], the Adomain decomposition method [31] and
Homotopy perturbation method [32].

Example 3.2. We now consider the following fourth-order parabolic equation
[21-32].

∂2u

∂t2
+

(
x

sin(x)
− 1

)
∂4u

∂x4
= 0, 0 < x < 1, t > 0 (16)

with the initial conditions:

u(x, 0) = x− sin(x),
∂u

∂t
(x, 0) = (x− sin(x))

and the boundary conditions:

u(0, t) = 0, u(1, t) = e−t(1− sin(1)),

∂2u

∂x2
(0, t) = 0,

∂2u

∂x2
(1, t) = e−tsin(1)

By applying aforesaid method, we have
∞∑

n=0

pnun(x, t) = (x−sin(x))(1−t)−pL−1

[(
x

sin(x)
− 1

)
1

s2
L

( ∞∑
n=0

pnun(x, t)

)
xxxx

]
(17)

Comparing the coefficients of various powers of p, we have

p0 : u0(x, t) = (x− sin(x)) (1− t) ,

p1 : u1(x, t) = (x− sin(x))

(
t2

2!
− t3

3!

)
,

p2 : u2(x, t) = (x− sin(x))

(
t4

4!
− t5

5!

)
,

p3 : u3(x, t) = (x− sin(x))

(
t6

6!
− t7

7!

)
,

...
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Therefore the approximate solution is given by

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...

u(x, t) = (x− sin(x)) e−t (18)

This is the exact solution and is same as obtained by the implicit and explicit
methods [21, 23-27], the Variational iteration method [28, 29], the Adomain de-
composition method [31] and Homotopy perturbation method [32].

Example 3.3. Let us consider the following fourth-order parabolic partial dif-
ferential equation [21-32].

∂2u

∂t2
+ (1 + x)

∂4u

∂x4
=

(
x4 + x3 − 6.x7

7!

)
cos(t) (19)

with the initial conditions:

u(x, 0) =
6.x7

7!
, ut(x, 0) = 0

and the boundary conditions:

u(0, t) = 0, u(1, t) =
6.cos(t)

7!

∂2u

∂x2
(0, t) = 0,

∂2u

∂t2
(1, t) =

cos(t)

20
By applying aforesaid method, we have
∞∑

n=0

p
n
un(x, t) =

6.x7

7!
+

(
x
4
+ x

3 −
6.x7

7!

)
(1−cos(t))−pL

−1

[
1

s2
(1 + x)L

( ∞∑
n=0

p
n
un(x, t)xxxx

)]
(20)

Comparing the coefficients of various powers of p, we have

p0 : u0(x, t) =
6.x7cos(t)

7!
+ (x4 + x3)(1− cos(t)),

p1 : u1(x, t) = −(x4 + x3)(1− cos(t))− 12(1 + x)t2 + 24(1− cos(t))(1 + x)

p2 : u2(x, t) = 12(1 + x)t2 − 24(1− cos(t))(1 + x)

p3 : u3(x, t) = 0

...

The noise term appearing between the components are cancelled out and re-
maining terms will satisfies the equations Therefore the approximate solution is
given by

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...

u(x, t) =
6.x7cos(t)

7!
(21)

The solution is same as obtained by the implicit and explicit methods [21, 23-27],
the Variational iteration method [28, 29], the Adomain decomposition method
[31] and Homotopy perturbation method [32].
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Example 3.4. Consider the following fourth-order parabolic differential equa-
tion [21-32].

∂2u

∂t2
+ 2

(
1

x2
+

x4

6!

)
∂4u

∂x4
+ 2

(
1

y2
+

y4

6!

)
∂4u

∂y4
= 0,

1

2
< x < 1, t > 0 (22)

with the initial conditions:

u(x, y, 0) = 0, ut(x, y, 0) = 2 +
x6

6!
+

y6

6!

and the boundary conditions:

u

(
1

2
, y, t

)
=

(
2 +

(0.5)6

6!
+

y6

6!

)
sin(t), u (1, y, t) =

(
2 +

1

6!
+

y6

6!

)
sin(t)

∂2u

∂x2

(
1

2
, y, t

)
=

(0.5)4

24
sin(t),

∂2u

∂x2
(1, y, t) =

1

24
sin(t)

∂2u

∂y2

(
x,

1

2
, t

)
=

(0.5)4

24
sin(t),

∂2u

∂y2
(x, 1, t) =

1

24
sin(t)

By applying aforesaid method, we have
∞∑

n=0

pnun(x, t) =

(
2 +

x6

6!
+

y6

6!

)
t− pL−1

[
1

s2

(
2

(
1

x2
+

x4

6!

)
L

( ∞∑
n=0

pnun(x, y, t)

)
xxxx

)]

−pL−1

 1

s2

2

(
1

y2
+

y4

6!

)
L

( ∞∑
n=0

pnun(x, y, t)

)
yyyy


Comparing the coefficients of various powers of p, we have

p0 : u0(x, y, t) =

(
2 +

x6

6!
+

y6

6!

)
t,

p1 : u1(x, y, t) =

(
2 +

x6

6!
+

y6

6!

)(
− t3

3!

)
p2 : u2(x, y, t) =

(
2 +

x6

6!
+

y6

6!

)(
t5

5!

)
p3 : u3(x, y, t) =

(
2 +

x6

6!
+

y6

6!

)(
− t7

7!

)
...

Therefore the approximate solution is given by

u(x, y, t) =

(
2 +

x6

6!
+

y6

6!

)
sin(t) (23)

The solution is same as obtained by the implicit and explicit methods [21, 23-27],
the Variational iteration method [28, 29], the Adomain decomposition method
[31] and Homotopy perturbation method [32].
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Example 3.5. Consider the following fourth-order parabolic equation [21-32].

∂2u

∂t2
+

(
y + z

2cos(x)
− 1

)
∂4u

∂x4
+

(
x+ z

2cos(y)
− 1

)
∂4u

∂y4
+

(
y + x

2cos(z)
− 1

)
∂4u

∂z4
= 0 (24)

with the initial conditions:

u(x, y, z, 0) = x+ y + z − (cos(x) + cos(y) + cos(z))

ut(x, y, z, 0) = −(x+ y + z) + (cos(x) + cos(y) + cos(z))

and the boundary conditions:

u(0, y, z, t) = e−t(−1 + y + z − cos(y)− cos(z))

u
(π
3
, y, z, t

)
= e−t

(
2π − 3

6
+ y + z − cos(y)− cos(z)

)
u(x, 0, z, t) = e−t(−1 + x+ z − cos(x)− cos(z))

u
(
x,

π

3
, z, t

)
= e−t

(
2π − 3

6
+ x+ z − cos(x)− cos(z)

)
u(x, y, 0, t) = e−t(−1 + y + x− cos(y)− cos(x))

u
(
x, y,

π

3
, t
)
= e−t

(
2π − 3

6
+ y + x− cos(y)− cos(x)

)
ux(0, y, z, t) = uy(x, 0, z, t) = uz(x, y, 0, t) = e−t

ux(
π

3
, y, z, t) = uy(x,

π

3
, z, t) = uz(x, y,

π

3
, t) =

31/2 + 2

2
e−t

By applying aforesaid method and comparing the coefficients of various powers
of p, we get the following solution

u(x, y, z, t) = [(x+ y + z)− (cos(x) + cos(y) + cos(z))] e−t (25)

which is an exact solution and is same as obtained by the implicit and explicit
methods [21, 23-27], the Variational iteration method [28, 29], the Adomain de-
composition method [31] and Homotopy perturbation method [32].

Example 3.6. Consider the following fourth-order parabolic equation [21-32].

∂2u

∂t2
+

(
1

4!z

)
∂4u

∂x4
+

(
1

4!x

)
∂4u

∂y4
+

(
1

4!y

)
∂4u

∂z4
=

[
x

y
+

y

z
+

z

x
+

1

x5
+

1

y5
+

1

z5

]
cos(t) (26)

with the initial conditions:

u(x, y, z, 0) =

(
x

y
+

y

z
+

z

x

)
, ut(x, y, z, 0) = 0

and the boundary conditions:

u

(
1

2
, y, z, t

)
=

(
1

2y
+

y

z
+ 2z

)
cos(t), u (1, y, z, t) =

(
1

y
+

y

z
+ z

)
cos(t),

u

(
x,

1

2
, z, t

)
=

(
1

2z
+

z

x
+ 2x

)
cos(t), u (x, 1, z, t) =

(
1

z
+

z

x
+ x

)
cos(t),



174 V.G. Gupta and Sumit Gupta

u

(
x, y,

1

2
, t

)
=

(
1

2x
+

x

y
+ 2y

)
cos(t), u (x, y, 1, t) =

(
1

x
+

x

y
+ y

)
cos(t),

ux

(
1

2
, y, z, t

)
=

(
1

y
− 4z

)
cos(t), ux (1, y, z, t) =

(
1

y
− z

)
cos(t),

uy

(
x,

1

2
, z, t

)
=

(
1

z
− 4x

)
cos(t), uy (x, 1, z, t) =

(
1

z
− x

)
cos(t),

uz

(
x, y,

1

2
, t

)
=

(
1

x
− 4y

)
cos(t), uz (x, y, 1, t) =

(
1

x
− y

)
cos(t),

By applying aforesaid method and the noise term appearing between the com-
ponents are cancelled out and remaining terms will satisfies the equations and
we get the following solution

u(x, y, z, t) =

(
x

y
+

y

z
+

z

x

)
cos(t) (27)

which is an exact solution .The results of the above example shows that our
method is capable of reducing the huge computational work and generates the
modification of homotopy perturbation method in the good convergence rate
and is same as obtained by the implicit and explicit methods [21, 23-27], the
Variational iteration method [28, 29], the Adomain decomposition method [31].

4. Conclusions

The main concern of this article is to construct an analytic solution for
fourth-order parabolic partial differential equations of variable coefficients. We
have achieved this goal by applying homotopy perturbation transform method
(HPTM). The main advantage of this algorithm is the fact that it provides its
user with an analytical approximation, in many cases an exact solution, in a
rapidly convergent sequence with elegantly computed terms. Analytical solu-
tions enable researchers to study the effect of different variables under study
easily. Its small size of computation in comparison with the computational size
required in other numerical methods and its rapid convergence show that the
method is reliable and introduces a significant improvement in solving partial
differential equations over existing methods. The solution procedure by using
He’s polynomials is simple, but the calculation of Adomain’s polynomials is
complex. The fact that the HPTM solves nonlinear problems without using the
Adomain’s polynomials can be considered as a clear advantage of this algorithm
over the decomposition method. Also the proposed scheme exploits full advan-
tage of Variational iteration method (VIM), Adomain’s decomposition method
(ADM) and Variational iteration decomposition method (VIDM). Finally, we
conclude that HPTM can be considered as a nice refinement in existing numer-
ical technique and might find wide applications in different fields of Sciences.
Numerical computation has been done by Maple-13 software package.
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