DOI QR코드

DOI QR Code

ANALYTICAL SOLUTION OF SINGULAR FOURTH ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS OF VARIABLE COEFFICIENTS BY USING HOMOTOPY PERTURBATION TRANSFORM METHOD

  • Gupta, V.G. (Department of Mathematics, University of Rajasthan) ;
  • Gupta, Sumit (Department of Mathematics, Jagan Nath Gupta Institute of Engineering and Technology)
  • Received : 2011.07.14
  • Accepted : 2012.09.24
  • Published : 2013.01.30

Abstract

In this paper, we apply Homotopy perturbation transform method (HPTM) for solving singular fourth order parabolic partial differential equations with variable coefficients. This method is the combination of the Laplace transform method and Homotopy perturbation method. The nonlinear terms can be easily handled by the use of He's polynomials. The aim of using the Laplace transform is to overcome the deficiency that is mainly caused by unsatisfied conditions in other semi-analytical methods such as Homotopy perturbation method (HPM), Variational iteration method (VIM) and Adomain Decomposition method (ADM). The proposed scheme finds the solutions without any discretization or restrictive assumptions and avoids the round-off errors. The comparison shows a precise agreement between the results and introduces this method as an applicable one which it needs fewer computations and is much easier and more convenient than others, so it can be widely used in engineering too.

Keywords

References

  1. G.Adomain, Solving Frontier problem of Physics: The Decomposition Method, Kluwer, Acad.Publ., Boston, 1994.
  2. A.M.Wazwaz, A new algorithm for calculating Adomain polynomials for nonlinear operators, Appl. Math. Comput 111 (2000), 53-59. https://doi.org/10.1016/S0096-3003(99)00047-8
  3. A.M.Wazwaz, Constructing of solitary wave solutions and rational solutions for the KdV equation by Adomain Decomposition Method, Chao. Sol. Frac 12(2001), 2283-2293 https://doi.org/10.1016/S0960-0779(00)00188-0
  4. A.Sadighi, D.D.Ganji, Y.Sabzehmeidani, A Decomposition method for Volume Flux and Average Velocity of thin film flow of a third grade film down an inclined plane, Adv. Theo. and Appl.Mech 1(2008), 45-49.
  5. A.M.Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math.Comput.Model 40(2004), 499-508. https://doi.org/10.1016/j.mcm.2003.12.010
  6. A.M.Wazwaz, The tanh and sine cosine methods for the complex modified and generalized KdV equations, Comput.Math.Appl 49 (2005),1101-1112 https://doi.org/10.1016/j.camwa.2004.08.013
  7. E.Fan, Extended tanh-function and its applications to nonlinear equations, Phys lett a 277(2000), 212-218. https://doi.org/10.1016/S0375-9601(00)00725-8
  8. Y.Keskin and G.Oturanc, Reduced Differential Transform Method for Partial differential equations, Int. J. Nonlin. Sci. and Numer.Simul, 10 (2009)741-749.
  9. Y.Keskin, G.Oturanc, Reduced Differential Transform Method for Fractional Partial Differential equations, Nonlin.Sci. Lett A 1 (2) (2010) 61-72.
  10. J.H.He, Variational Iteration method-a kind of nonlinear analytical techniques: some examples, Int. J. Nonlin. Mech., 34 (1999) 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
  11. J.H.He and X.H.Wu, Variational Iteration Method: new development and applications, Comp. Math.Appl., 59 (2007) 881-884.
  12. L.A.Soltani and A.Shirzadi, A new modification of the variational iteration method, Comp.Math.Appl., 59 (2010) 2528-2535. https://doi.org/10.1016/j.camwa.2010.01.012
  13. N.Faraz, Y.Khan and A.Yildirim, Analytical Approach to two dimensional viscous flows with a shrinking sheet via variational iteration algorithm-II, J. King Saud Univ., (2010) doi: 10.10161j.jksus.2010.06.010.
  14. G.C.Wu and E.W.M. Lee, Fractional variational iteration method and its application, Phy. Lett. A (2010) doi: 10.1016/j.physleta.2010.04.034.
  15. C.Chun, Fourier-Series based variational iteration method for a reliable treatment of heat equations with variable coefficients, Int.J. Nonlin. Sci. Numer. Simul., 10 (2009) 1383-1388.
  16. S.A.Khuri, A Laplace decomposition algorithm applied to a class of nonlinear partial differential equations, J. Appl.Math. 1(2001), 141-155. https://doi.org/10.1155/S1110757X01000183
  17. E.Yusufoglu, Numerical solution of Duffing equation by the Laplace decomposition method, Appl.Math.Comput. 177(2006), 572-580. https://doi.org/10.1016/j.amc.2005.07.072
  18. Y.Khan, An efficient modification of the Laplace decomposition method for nonlinear equations, Int. J. Nonlin. Sci. and Numer.Simul.10(2009), 1373-1376.
  19. Y.Khan and N.Faraz, A new approach to differential-difference equations, J.Adv.Res.Diff.Equation 2 (2010), 1-12.
  20. S.Islam, Y.Khan and N.Faraz, Numerical solution of logistic differential equations by using the Laplace decomposition method, W.Appl.Sci 8(2010), 1100-1105.
  21. A.Q.M. Kahliq and E.H.Twizell, A family of second-order method for variable coefficients fourth-order parabolic partial differential equations, Int.J. Comp.Math. 23(1987), 63-76. https://doi.org/10.1080/00207168708803608
  22. D.J.Gorman, Free vibrations analysis of beams and shafts, J. Wiley and Sons, New York, 1975.
  23. C. Andrade and S.Mckee, High frequency A.D.I methods for fourth-order parabolic equations with variable coefficients, Int.J.Comp.Appl.Math 3 (1977), 11-14. https://doi.org/10.1016/0771-050X(77)90019-5
  24. S.D.Conte, A stable implicit difference approximations to a fourth-order parabolic equation, J. Asso.Comp.Mechanics 4(1957), 210-212.
  25. S.D.Conte and W.C.Royster, Convergence of finite difference solution to a solution of the equation of a vibration beam, Proc.Amer.Math.Society 7 (1952), 742-749.
  26. D.J.Evans, A stable explicit method for the finite difference solution of fourth-order parabolic partial differential equations, Comp.Journal 8 (1965), 280-287. https://doi.org/10.1093/comjnl/8.3.280
  27. D.J.Evans and W.S.Yousef, A note on solving the fourth-order parabolic equation by an AGE method, Int.J.Comp.Mathematics 40(1991), 93-97. https://doi.org/10.1080/00207169108804004
  28. J.Biazar and H.Ghavini, He's variational iteration method for fourth-order parabolic equations, Comp.Math.Applications 54(2007), 1047-1054. https://doi.org/10.1016/j.camwa.2006.12.049
  29. M.A.Noor, K.I.Noor and S.T.Mohyud-Din, Modified variational iteration technique for singular fourth-order parabolic partial differential equations, Non.Analysis. 71(2009), 630-640 https://doi.org/10.1016/j.na.2008.11.011
  30. A.M Wazwaz, Exact solutions for variable coefficients fourth order partial differential equations in higher dimension spaces, Appl.Math.Computation 130 (2002), 415-424. https://doi.org/10.1016/S0096-3003(01)00109-6
  31. A.M.Wazwaz, Analytical treatment for variable coefficients fourth-order parabolic partial differential equations, Appl.Math.Computation 130(2001), 219-227.
  32. M.Fazeli, S.A.Zahedi and N.Tolou, Explicit solution of nonlinear fourth-order Parabolic Equations via Homotopy Perturbation Method, J. Appl.Science 14(2008), 2619-2624.
  33. J.H.He, Homotopy perturbation techniques, Comp.Meth.Appl.Mech.Engineering,178 (1999), 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
  34. J.H.He, Homotopy perturbation method: a new nonlinear analytical technique, Appl.Math.Computation 135 (2003), 73-79.
  35. J.H.He, Comparison of Homotopy perturbation method and Homotopy analysis method, Appl.Math.Computation 156(2005), 527-539.
  36. J.H.He, The homotopy perturbation method for nonlinear oscillator with discontinuities, Appl.Math.Computation 151(2004), 287-292. https://doi.org/10.1016/S0096-3003(03)00341-2
  37. J.H.He, Some asymptotic methods for strongly nonlinear equation,Int.J.Mod.Physics B 20 (2006), 1144-1199.
  38. J.H.He, Homotopy perturbation method for solving Boundary Value Problems, Phys.Lett.A 350(2006), 87-88. https://doi.org/10.1016/j.physleta.2005.10.005
  39. J.H.He, Limit cycles and bifurcations of nonlinear problems, Chao.Solt.Fractals 26(2005), 627-633.
  40. J.H.He, A coupling of homotopy technique and perturbation technique for nonlinear problems, Int.J.Non.Mechanics 35 (2000), 37-43. https://doi.org/10.1016/S0020-7462(98)00085-7
  41. J.H.He, A new perturbation technique which is also valid for large parameters, J. S.and Vibration 29(2000), 12571263.
  42. J.H.He, A note on the Homotopy perturbation method, Ther.Science 14(2010), 565-568.
  43. G.Domairry and N.Nadim, Assessment of homotopy analysis method and homotopy perturbation method in nonlinear heat transfer equation,Int.Comm.Heat and Mass Transfer 35 (2008), 93-102. https://doi.org/10.1016/j.icheatmasstransfer.2007.06.007
  44. A.Rajabi, Homotopy perturbation method for fin efficiency of convective straight fins with temperature dependent thermal conductivity, Phys.Lett.A 364(2007), 33-37. https://doi.org/10.1016/j.physleta.2006.11.062
  45. M.Akbarzade and J.Langari, Application of Homotopy perturbation method and Variational iteration method to three dimensional diffusion problem, Int.J.Math.Analysis 18(2011), 871-880.
  46. B.Raftari and A.Yildirim, The application of homotopy perturbation method for MHD flows of UCM fluids above porous stretching sheet, Comp.Math.Applications 59 (2010),3328-3337. https://doi.org/10.1016/j.camwa.2010.03.018
  47. V.G.Gupta and S.Gupta, Homotopy perturbation transform method for solving initial boundary value problems of variable coefficients, Int.J.Non.Sciences 12 (2011), 270-277.
  48. L.Xu, He's homotopy perturbation method for boundary layer equation in unbounded domain, Comp.Math.Applications 54(2007), 1067-1070. https://doi.org/10.1016/j.camwa.2006.12.052
  49. A.Yildirim, Application of He's homotopy perturbation method for solving the Cauchy reaction-diffusion equations, Comp.Math.Applications 57(2009), 612-618. https://doi.org/10.1016/j.camwa.2008.11.003
  50. D.D.Ganji, The application of He's homotopy perturbation method for nonlinear equation arising in heat transfer, Phys.Lett.A 355 (2006), 337-341. https://doi.org/10.1016/j.physleta.2006.02.056
  51. J.Biazar, Z.Ayati and H.Ebrahimi, Homotopy perturbation method for general form of porous medium equation, J.Poros.Media 12 (2009), 1121-1127. https://doi.org/10.1615/JPorMedia.v12.i11.80
  52. A.M Siddiqui, R.Mahmood and Q.K.Ghori, Thin film flow of a third grade fluid on a moving belt by He's homotopy perturbation method,Int.J.Non.Sci.Numer.Simulation 7 (2006), 7-12.
  53. J.Biazar., K.Hosseini and P.Gholamin, Homotopy perturbation method Fokker-Planck equation, Int.Math.Forum 19(2008), 945-954.
  54. J.Biazar, M.Gholami and P.Ghanbari, Extracting a general iterative method from an adomain decomposition method and compare it to the variational iteration method, Comp.Math.Applications 59(2010), 622-628. https://doi.org/10.1016/j.camwa.2009.11.001
  55. M.Madani and M.Fatizadeh, Homotopy perturbation algorithm using Laplace transformation, Non.Lin.Science Letter A 1 (2010), 263-267.
  56. M.A Noor and S.T.Mohyud-Din, Variational homotopy perturbation method for solving higher dimensional initial boundary value problem,Mathematical Problems in Engineering (2008) Article ID 696734 doi: 10.1155 / 2008 / 696734.
  57. A.Ghorbani and J.Saberi-Nadjafi, He's homotopy perturbation method for calculating Adomain's polynomials, Int.J.Non.Sci.Numer.Simulation 8(2007), 229-232.
  58. A.Ghorbani, Beyond Adomain's polynomials: He's polynomials,Chao.Sol.Fractals 39(2009), 1486-1492. https://doi.org/10.1016/j.chaos.2007.06.034
  59. Y.Khan and Q.Wu, Homotopy perturbation transform method for solving nonlinear equations using He's polynomials, Comp.Math.Applications 6(2011), 234-266.

Cited by

  1. High Accuracy Compact Operator Methods for Two-Dimensional Fourth Order Nonlinear Parabolic Partial Differential Equations vol.17, pp.4, 2017, https://doi.org/10.1515/cmam-2016-0047
  2. High Accuracy Compact Operator Methods for Two-Dimensional Fourth Order Nonlinear Parabolic Partial Differential Equations vol.17, pp.4, 2017, https://doi.org/10.1515/cmam-2016-0047