• Title/Summary/Keyword: perturbation of domains

Search Result 10, Processing Time 0.026 seconds

PERTURBATION OF DOMAINS AND AUTOMORPHISM GROUPS

  • Fridman, Buma L.;Ma, Daowei
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.487-501
    • /
    • 2003
  • The paper is devoted to the description of changes of the structure of the holomorphic automorphism group of a bounded domain in \mathbb{C}^n under small perturbation of this domain in the Hausdorff metric. We consider a number of examples when an arbitrary small perturbation can lead to a domain with a larger group, present theorems concerning upper semicontinuity property of some invariants of automorphism groups. We also prove that the dimension of an abelian subgroup of the automorphism group of a bounded domain in \mathbb{C}^n does not exceed n.

Pattern Formations with Turing and Hopf Oscillating Pattern in a Discrete Reaction-Diffusion System

  • Lee, Il Hui;Jo, Ung In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1213-1216
    • /
    • 2000
  • Localized structures with fronts connecting a Turing patterns and Hopf oscillations are found in discrete reaction-diffusion system. The Chorite-Iodide-Malonic Acid (CIMA) reaction model is used for a reaction scheme. Localized structures in discrete reaction-diffusion system have more diverse and interesting features than ones in continuous system. Various localized structures can be obtained when a single perturbation is applied with variation of coupling strength of two intermediates. Roles of perturbations are not so simple that perturbations are sources of both Turing patterns and Hopf oscillating domains, and spatial distribution of them is determined by strength of a perturbation applied initially.

Discrete model reduction over disc-type analytic domains (디스크형태의 해석적영역을 가지는 이산모델 차수축소)

  • 오도창;정은태;이갑래;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.27-34
    • /
    • 1998
  • This paper is on the discrete model reduction method over disc-type analytic domains. We define hankel singular value over the disc that is mapped by standard bilinear mapping. And the generalized singular perturbation approximation and the direct truncation are generalized to GSPA and DT over a disc. Furthermore, it is shown that the reduced order model over a smaller domaing has a smaller .inf.-norm error bound. And the poposed reduction method is used to obtain the regional pole placement property.

  • PDF

Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets

  • Rostami, Rasoul;Rahaghi, Mohsen Irani;Mohammadimehr, Mehdi
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.185-193
    • /
    • 2020
  • Nonlinear vibration of sandwich plate with functionally graded material (FGM) core and carbon nano tubes reinforced (CNTs) nano-composite layers by considering temperature-dependent material properties are studied in this paper. Base on Classical plate theory (CPT), the governing partial differential equations of motion for sandwich plate are derived using Hamilton principle. The Galerkin procedure and multiple scales perturbation method are used to find relation between nonlinear frequency and amplitude of vibration response. The dynamic responses of the sandwich plate are also investigated in both time and frequency domains. Then, the effects of nonlinearity, excitation, power law index of FG core, volume fraction of carbon nanotube, the function of material variations of FG core, temperature changes, scale transformation parameter and damping factor on the frequency responses are investigated.

DISCRETE MODEL REDUCTION OVER DISC-TYPE ANALYTIC DOMAINS AND $\infty$-NORM ERROR BOUND

  • Oh, Do-Chang;Lee, Kap-Rai;Um, Tae-Ho;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.64-68
    • /
    • 1996
  • In this note, we propose the discrete model reduction method over disc-type analytic domains. We define Hankel singular value over the disc that is mapped by standard bilinear mapping. And GSPA(generalized singular perturbation approximation) and DT(direct truncation) are generalized to GSPA and DT over a disc. Furthermore we show that the reduced order model over a smaller domain has a smaller L$_{\infty}$ norm error bound..

  • PDF

STABILITY OF THE BERGMAN KERNEL FUNCTION ON PSEUDOCONVEX DOMAINS IN $C^n$

  • Cho, Hong-Rae
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.349-355
    • /
    • 1995
  • Let $D \subset C^n$ be a smoothly bounded pseudoconvex domain and let ${\bar{D}_r}_r$ be a family of smooth perturbations of $\bar{D}$ such that $\bar{D} \subset \bar{D}_r$. Let $K_D(z, w)$ be the Bergman kernel function on $D \times D$. Then $lim_{r \to 0} K_{D_r}(z, w) = K_D(z, w)$ locally uniformally on $D \times D$.

  • PDF

Structural Studies of Peptide Binding Interaction of HCV IRES Domain IV

  • Shin, Ji Yeon;Bang, Kyeong-Mi;Song, Hyun Kyu;Kim, Nak-Kyoon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.3
    • /
    • pp.109-113
    • /
    • 2017
  • The hepatitis C virus (HCV) internal ribosome entry site (IRES) is an RNA structure located in the 5'-UTR of the HCV RNA genome. The HCV IRES consists of four domains I, II, III, and IV, where domains II - IV are recognized by 40S ribosomal subunit and the domain III is bound to eukaryotic initiation factor 3 (eIF3) for translation initiation. Here, we have characterized the tertiary interaction between an L-/K- rich peptide and the HCV IRES domain IV. To probe the peptide binding interface in RNA, we synthesized $^{13}C$- and $^{15}N$-double labeled RNA and the binding site was identified by using the chemical shift perturbation (CSP) NMR methods. Our results showed that the peptide binds to the upper stem of the IRES domain IV, indicating that the tertiary interaction between the IRES domain IV and the peptide would disrupt the initiation of translation of HCV mRNA by blocking the start codon exposure. This study will provide an insight into the new peptide-based anti-viral drug design targeting HCV IRES RNA.

Regulated Expression of Nebulin by Transfection of Green Fluorescent Protein-Tagged Nebulin Fragments in Cultured Chicken Myoblast

  • Park, Su-Jung;Kim, Ji-Hee;Ko, Han-Suk;Kim, Chong-Rak;Kim, Han-Do;Kang, Ho-Sung
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.167-172
    • /
    • 2001
  • Nebulin is an approximately 700 kDa filamentous protein in vertebrate skeletal muscle. It binds to the Z line and also binds side-by-side to the entire thin actin filament in a sarcomere. The correlation of nebulin size with thin filament length have led to the suggestion that nebulin acts as a molecular ruler for the length of thin filaments. The C-terminal part of human nebulin is anchored in the sarcomeric Z-disk and contains an SH3 domain. SH3 domains have been identified in an ever-increasing number of proteins important for a wide range of cellular processes, from signal transduction to cytoskeleton assembly and membrane localization. However, the exact physiological role of SH3 domains remains, in many cases, unclear. To explore the role of nebulin SH3 in the cytoskeletal rearrangement that accompanies myoblast differentiation, we transfected sense and antisense nebulin SH3 domain fused to enhanced green fluorescent protein in myoblast. Cells expressing nebulin SH3 fragment showed decrease of cell-cell adhesion, and cells transfected with antisense nebulin SH3 gene showed a rounded cell morphology and loss of cell-matrix adhesion. No alteration in cell shape and differentiation were observed in control cells expressing enhanced green fluorescent protein. Perturbation of nebulin altered the cell shape and disrupted cell adhesion in myoblast, demonstrating that nebulin can affect cytoskeleton rearrangement.

  • PDF

NMR Signal Assignments of Human Adenylate Kinase 1 (hAK1) and its R138A Mutant (hAK1R138A)

  • Kim, Gilhoon;Chang, Hwanbong;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Adenylate kinase (AK) enzyme which acts as the catalyst of reversible high energy phosphorylation reaction between ATP and AMP which associate with energetic metabolism and nucleic acid synthesis and signal transmission. This enzyme has three distinct domains: Core, AMP binding domain (AMPbd) and Lid domain (LID). The primary role of AMPbd and LID is associated with conformational changes due to flexibility of two domains. Three dimensional structure of human AK1 has not been confirmed and various mutation experiments have been done to determine the active sites. In this study, AK1R138A which is changed arginine[138] of LID domain with alanine[138] was made and conducted with NMR experiments, backbone dynamics analysis and mo-lecular docking dynamic simulation to find the cause of structural change and substrate binding site. Synthetic human muscle type adenylate kinase 1 (hAK1) and its mutant (AK1R138A) were re-combinded with E. coli and expressed in M9 cell. Expressed proteins were purified and finally gained at 0.520 mM hAK1 and 0.252 mM AK1R138A. Multinuclear multidimensional NMR experiments including HNCA, HN(CO)CA, were conducted for amino acid sequence analysis and signal assignments of $^1H-^{15}N$ HSQC spectrum. Our chemical shift perturbation data is shown LID domain residues and around alanine[138] and per-turbation value(0.22ppm) of valine[179] is consid-ered as inter-communication effect with LID domain and the structural change between hAK1 and AK1R138A.

2D Prestack Generalized-screen Migration (2차원 중합전 일반화된-막 구조보정)

  • Song, Ho-Cheol;Seol, Soon-Jee;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.315-322
    • /
    • 2010
  • The phase-screen and the split-step Fourier migrations, which are implemented in both the frequency-wavenumber and frequency-space domains by using one-way scalar wave equation, allow imaging in laterally heterogeneous media with less computing time and efficiency. The generalized-screen migration employs the series expansion of the exponential, unlike the phase-screen and the split-step Fourier migrations which assume the vertical propagation in frequency-wavenumber domain. In addition, since the generalized-screen migration generalizes the series expansion of the vertical slowness, it can utilize higher-order terms of that series expansion. As a result, the generalized-screen migration has higher accuracy in computing the propagation with wide angles than the phase-screen and split-step Fourier migrations for media with large and rapid lateral velocity variations. In this study, we developed a 2D prestack generalized-screen migration module for imaging a complex subsurface efficiently, which includes various dips and large lateral variations. We compared the generalized-screen propagator with the phase-screen propagator for a constant perturbation model and the SEG/EAGE salt dome model. The generalized-screen propagator was more accurate than the phase-screen propagator in computing the propagation with wide angles. Furthermore, the more the higher-order terms were added for the generalized-screen propagator, the more the accuracy was increased. Finally, we compared the results of the generalizedscreen migration with those of the phase-screen migration for a model which included various dips and large lateral velocity variations and the synthetic data of the SEG/EAGE salt dome model. In the generalized-screen migration section, reflectors were positioned more accurately than in the phase-screen migration section.