• Title/Summary/Keyword: perturbation equations

Search Result 307, Processing Time 0.023 seconds

Rotordynamic and Leakage Analysis for Stepped-Labyrinth Gas Seal (압축기용 계단식 래버린스 실의 누설 및 동특성해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1084-1089
    • /
    • 2000
  • The basic equations are derived for the analysis of a stepped labyrinth gas seal which are generally used in high performance compressors, gas turbines, and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The leakage and rotordynamic characteristic results of the stepped labyrinth gas seal are presented and compared with Scharrer's theoretical analysis using Blasius' wall-friction-factor formula.

  • PDF

THE BUCHSTAB'S FUNCTION AND THE OPERATIONAL TAU METHOD

  • Aliabadi, M.Hosseini
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.905-915
    • /
    • 2000
  • In this article we discuss some aspects of operational Tau Method on delay differential equations and then we apply this method on the differential delay equation defined by $\omega(u)\;=\frac{1}{u}\;for\;1\lequ\leq2$ and $(u\omega(u))'\;=\omega(u-1)\;foru\geq2$, which was introduced by Buchstab. As Khajah et al.[1] applied the Recursive Tau Method on this problem, they had to apply that Method under the Mathematica software to get reasonable accuracy. We present very good results obtained just by applying the Operational Tau Method using a Fortran code. The results show that we can obtain as much accuracy as is allowed by the Fortran compiler and the machine-limitations. The easy applications and reported results concerning the Operational Tau are again confirming the numerical capabilities of this Method to handle problems in different applications.

HYBRID DIFFERENCE SCHEMES FOR A SYSTEM OF SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATIONS

  • Priyadharshini, R.Mythili;Ramanujam, N.;Tamilselvan, A.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1001-1015
    • /
    • 2009
  • In this paper, two hybrid difference schemes on the Shishkin mesh are constructed for solving a weakly coupled system of two singularly perturbed convection-diffusion second order ordinary differential equations with a small parameter multiplying the highest derivative. We prove that the schemes are almost second order convergence in the supremum norm independent of the diffusion parameter. Error bounds for the numerical solution and its derivative are established. Numerical results are provided to illustrate the theoretical results.

  • PDF

Dynamic Analysis of an Automatic Dynamic Balancer in a Rotor with the Bending Flexibility (축의 굽힘효과를 고려한 회전체에 장착된 자동평형장치의 동적해석)

  • Jeong, Jin-Tae;Bang, In-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1125-1130
    • /
    • 2001
  • Dynamic behaviors of an automatic dynamic balancer are analyzed by a theoretical approach. Using the polar coordinates, the non-linear equations of motion for an automatic dynamic balancer equipped in a rotor with the bending flexibility are derived from Lagrange equation. Based on the non-linear equation, the stability analysis is performed by using the perturbation method. The stability results are verified by computing dynamic response. The time responses are computed from the non-linear equations by using a time integration method. We also investigate the effect of the bending flexibility on the dynamics of the automatic dynamic balancer.

Large Amplitude Oscillations in a Hanging Cable and Suspension Bridge: Some New Connections with Nonlinear Analysis (케이블과 현수교 다리에서 일어나는 진폭이 큰 진동에 대한 연구)

  • Oh Hye-Young
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • The motions of suspension bridge as well as hanging cable are governed by nonlinear partial differential equations. Nonlinearity gives rise to a large amplitude oscillation. We use finite difference methods to compute periodic solutions to the torsional partial differential equations. We use the one-noded forcing term and a slight perturbation in the forcing term.

  • PDF

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 펌프 실의 누설 및 회전체동역학적 해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-21
    • /
    • 2001
  • Basic equations and their solution procedure we derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients aye presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

Leakage and Rotordynamic Analysis for Staggered-Labyrinth Gas Seal (엇갈린 래버린스 실의 누설량 및 동특성 해석)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • The basic equations are derived for the analysis of a staggered labyrinth gas seal which are generally used in high performance compressors and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the staggered labyrinth gas seal. Theoretical results of leakage and rotordynamic characteristics for the staggered labyrinth gas seal are compared with those of the plain seal and see-through labyrinth seal.

Analysis on the Nonlinear Vibration Characteristics of a Belt Driven System (밸트 구동계의 비선형 진동 특성 해석)

  • 김성걸;이장무;이신영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.945-952
    • /
    • 1994
  • In this paper, a mathematical model for a belt driven system is proposed to analyse the vibtation characteristics of the driving units with belts and the free and forced vibration analyses are carried out. The mathematical model for model for the belt-driven system includes belts,pulleys, spindle and bearings. Using the Hamilton principle, the 4 nonlinear governing equations and the 12 nonlinear boundary conditions are derived. To linearize and discretize the nonlinear govering equations and boundary conditions, the perturbation method and Galerkin method are used. Also, the free vibration analyses for the various parameters of the belt driven system, which are belt tension, belt length, material property of belt, belt speed and pulley mass are made. The forced vibration analyses of the system are made and the dynamic responses for the main parmeters are analysed with the belt driven system.

  • PDF

Modeling and Verification for Stability Analysis of Axially Oscillating Cantilever Beams (축 방향 왕복운동을 하는 외팔보의 안정성 해석을 위한 모델링 및 검증)

  • Kim, Sung-Do;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.176-182
    • /
    • 2006
  • Modeling and verification for stability analysis of axially oscillating cantilever beams are investigated in this paper Equations of motion for the axially oscillating beams are derived and transformed into dimensionless forms. The equations include harmonically oscillating parameters which are related to the motion-induced stiffness variation. stability diagram is obtained by using the multiple scale perturbation method. To verify the accuracy of the modeling method, several points in the plane of the stability diagram are presented and solved. The present modeling method proves to be as accurate as a nonlinear finite element modeling method.

Mathematical solution for nonlinear vibration equations using variational approach

  • Bayat, M.;Pakar, I.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1311-1327
    • /
    • 2015
  • In this paper, we have applied a new class of approximate analytical methods called Variational Approach (VA) for high nonlinear vibration equations. Three examples have been introduced and discussed. The effects of important parameters on the response of the problems have been considered. Runge-Kutta's algorithm has been used to prepare numerical solutions. The results of variational approach are compared with energy balance method and numerical and exact solutions. It has been established that the method is an easy mathematical tool for solving conservative nonlinear problems. The method doesn't need small perturbation and with only one iteration achieve us to a high accurate solution.