• Title/Summary/Keyword: peroxiredoxin 2

Search Result 66, Processing Time 0.025 seconds

Classification of Peroxiredoxin Subfamilies Using Regular Expressions

  • Chon, Jae Kyung;Choi, Jongkeun;Kim, Sang Soo;Shin, Whanchul
    • Genomics & Informatics
    • /
    • v.3 no.2
    • /
    • pp.55-60
    • /
    • 2005
  • Peroxiredoxins (Prx's) are a superfamily of peroxidases that are ubiquitous in all super-kingdoms. Previous biochemical and structural studies have suggested that Prx's could be divided into five subfamilies (1-Cys, Typical 2-Cys, Atypical 2-Cys C-, L- and R- types). In this work, we have developed a set of regular expression patterns describing subfamily-specific spatial constraints of the key catalytic residues. Using these patterns, 1,016 Prx's available in public databases were classified into the five subfamilies. Our method performed well for most of the types except for Atypical 2 Cys R type.

Molecular Characterization and Expression Analysis of Peroxiredoxin 2 cDNA from Abalone (Haliotis discus hannai) (참전복(Haliotis discus hannai)에서 분리한 peroxiredoxin 2 유전자의 분자생물학적 고찰 및 발현분석)

  • Moon, Ji Young;Park, Eun Hee;Kong, Hee Jeong;Kim, Young-Ok;Kim, Dong-Gyun;An, Cheul Min;Nam, Bo-Hye
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1291-1300
    • /
    • 2014
  • Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that participate in a variety of biological processes, including $H_2O_2$-mediated signal transduction, molecular chaperoning, and mitochondrial function. In this study, we isolated and characterized a Prx 2 cDNA from abalone (Haliotis discus hannai). The abalone Prx 2 cDNA encoded a 199-amino acid polypeptide that belongs to a class of typical 2-Cys Prxs that contain peroxidatic and resolving cysteines. The deduced abalone Prx 2 protein showed strong homology (64-99%) with Prx 2 proteins from other species, including mollusk, fish, amphibians, and mammals, and it was most closely related to disk abalone (H. discus discus) Prx 2. Abalone Prx 2 mRNA was ubiquitously detected in tested tissues, and its expression was comparatively high in the mantle, gills, liver, foot, and digestive duct. The expression level of abalone Prx 2 mRNA was 106.7-fold, 51.9-fold, and 437.8-fold higher, respectively, in the gills, digestive duct, and liver than in the muscles. The expression level of abalone Prx 2 mRNA in the liver peaked at 6 hr postinfection with Vibrio parahemolyticus and decreased at 12 hr postinfection. The expression level of abalone Prx 2 mRNA in hemocytes was drastically increased at 1 hr postinfection with V. parahemolyticus. These results suggest that abalone Prx 2 is conserved through evolution and that it may play a role similar to that of its mammalian counterpart.

Transcriptional Regulation of the AP-1 and Nrf2 Target Gene Sulfiredoxin

  • Soriano, Francesc X.;Baxter, Paul;Murray, Lyndsay M.;Sporn, Michael B.;Gillingwater, Thomas H.;Hardingham, Giles E.
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.279-282
    • /
    • 2009
  • "Two-cysteine" peroxiredoxins are antioxidant enzymes that exert a cytoprotective effect in many models of oxidative stress. However, under highly oxidizing conditions they can be inactivated through hyperoxidation of their peroxidatic active site cysteine residue. Sulfiredoxin can reverse this hyperoxidation, thus reactivating peroxiredoxins. Here we review recent investigations that have shed further light on sulfiredoxin's role and regulation. Studies have revealed sulfiredoxin to be a dynamically regulated gene whose transcription is induced by a variety of signals and stimuli. Sulfiredoxin expression is regulated by the transcription factor AP-1, which mediates its up-regulation by synaptic activity in neurons, resulting in protection against oxidative stress. Furthermore, sulfiredoxin has been identified as a new member of the family of genes regulated by Nuclear factor erythroid 2-related factor (Nrf2) via a conserved cis-acting antioxidant response element (ARE). As such, sulfiredoxin is likely to contribute to the net antioxidative effect of small molecule activators of Nrf2. As discussed here, the proximal AP-1 site of the sulfiredoxin promoter is embedded within the ARE, as is common with Nrf2 target genes. Other recent studies have shown that sulfiredoxin induction via Nrf2 may form an important part of the protective response to oxidative stress in the lung, preventing peroxiredoxin hyperoxidation and, in certain cases, subsequent degradation. We illustrate here that sulfiredoxin can be rapidly induced in vivo by administration of CDDO-TFEA, a synthetic triterpenoid inducer of endogenous Nrf2, which may offer a way of reversing peroxiredoxin hyperoxidation in vivo following chronic or acute oxidative stress.

Artificial Oxidation of Cysteine Residues in Peroxiredoxin 6 Detected by Twodimensional Gel Electrophoresis and Capillary Liquid Chromatography-Electrospray Mass Spectrometry

  • Kimata, Junko;Shigeri, Yasushi;Yoshida, Yasukazu;Niki, Etsuo;Kinumi, Tomoya
    • Mass Spectrometry Letters
    • /
    • v.3 no.1
    • /
    • pp.10-14
    • /
    • 2012
  • Artificially oxidized cysteine residues in peroxiredoxin 6 (Prx6) were detected by electrospray interface capillary liquid chromatography-linear ion trap mass spectrometry after the preparation of two-dimensional gel electrophoresis (2D-GE). We used Prx6 as a model protein because it possesses only two cysteine residues at the 47th and 91st positions. The spot of Prx6 on 2D-GE undergoes a basic (isoelectric point, pI 6.6) to acidic (pI 6.2) shift by exposure to peroxide due to selective overoxidation of the active-site cysteine Cys-47 but not of Cys-91. However, we detected a tryptic peptide containing cysteine sulfonic acid at the 47th position from the basic spot and a peptide containing both oxidized Cys-47 and oxidized Cys-91 from the acidic spot of Prx6 after the separation by 2D-GE. We prepared two types of oxidized Prx6s: carrying oxidized Cys-47 (single oxidized Prx6), and other carrying both oxidized Cys-47 and Cys-91 (double oxidized Prx6). Using these oxidized Prx6s, the single oxidized Prx6 and double oxidized Prx6 migrated to pIs at 6.2 and 5.9, respectively. These results suggest that oxidized Cys-47 from the basic spot and oxidized Cys-91 from the acidic spot are generated by artificial oxidation during sample handling processes after isoelectric focusing of 2D-GE. Therefore, it is important to make sure of the origin of cysteine oxidation, if it is physiological or artificial, when an oxidized cysteine residue(s) is identified.

Molecular Cloning, Expression and Functional Characterization of a Peroxiredoxin from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Kang sun Ryu;Kim, Jin-Won;Ahn, Mi-Young;Kwang Sik;Jin, Byung-Rae
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.130-133
    • /
    • 2003
  • Peroxiredoxins are a family of antioxidant proteins ubiquitously found in all living organisms. A type of peroxidase enzyme, named thioredoxin peroxidase (TPx), that reduces $H_2O$$_2$ with the use of electrons from thioredoxin and contains two essential cysteines was identified in a wide variety of organisms ranging from prokaryotes to mammals. TPx homologs, termed peroxiredoxin (Prx), have also been identified and include several proteins, designated 1-Cys Prx, that contain only one conserved cysteine. (omitted)

  • PDF

Peroxiredoxin 3 Has Important Roles on Arsenic Trioxide Induced Apoptosis in Human Acute Promyelocytic Leukemia Cell Line via Hyperoxidation of Mitochondrial Specific Reactive Oxygen Species

  • Mun, Yeung-Chul;Ahn, Jee Young;Yoo, Eun Sun;Lee, Kyoung Eun;Nam, Eun Mi;Huh, Jungwon;Woo, Hyun Ae;Rhee, Sue Goo;Seong, Chu Myong
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.813-820
    • /
    • 2020
  • NB4 cell, the human acute promyelocytic leukemia (APL) cell line, was treated with various concentrations of arsenic trioxide (ATO) to induce apoptosis, measured by staining with 7-amino-actinomycin D (7-AAD) by flow cytometry. 2', 7'-dichlorodihydro-fluorescein-diacetate (DCF-DA) and MitoSOX™ Red mitochondrial superoxide indicator were used to detect intracellular and mitochondrial reactive oxygen species (ROS). The steady-state level of SO2 (Cysteine sulfinic acid, Cys-SO2H) form for peroxiredoxin 3 (PRX3) was measured by a western blot. To evaluate the effect of sulfiredoxin 1 depletion, NB4 cells were transfected with small interfering RNA and analyzed for their influence on ROS, redox enzymes, and apoptosis. The mitochondrial ROS of NB4 cells significantly increased after ATO treatment. NB4 cell apoptosis after ATO treatment increased in a time-dependent manner. Increased SO2 form and dimeric PRX3 were observed as a hyperoxidation reaction in NB4 cells post-ATO treatment, in concordance with mitochondrial ROS accumulation. Sulfiredoxin 1 expression is downregulated by small interfering RNA transfection, which potentiated mitochondrial ROS generation and cell growth arrest in ATO-treated NB4 cells. Our results indicate that ATO-induced ROS generation in APL cell mitochondria is attributable to PRX3 hyperoxidation as well as dimerized PRX3 accumulation, subsequently triggering apoptosis. The downregulation of sulfiredoxin 1 could amplify apoptosis in ATO-treated APL cells.

Selection of transgenic sweetpotato plants expressing 2-Cys peroxiredoxin with enhanced tolerance to oxidative stress (Peroxiredoxin 유전자 발현 산화스트레스 내성 형질전환 고구마의 선발)

  • Kim, Myoung-Duck;Yang, Kyoung-Sil;Kwon, Suk-Yoon;Lee, Sang-Yeol;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • In order to develop transgenic sweetpotato plants [Ipomoea batatas (L.) Lam. cv. Yulmi] with enhanced tolerance to oxidative stress, we constructed transformation vectors expressing 2-Cys peroxiredoxin (Prx) gene under the control of the stress-inducible SWPA2 or enhanced 35S promoter (named as SP or EP). Transgenic sweetpotato plants were attempted to generate from embryogenic calli using an Agrobacterium-mediated transformation system. Embryogenic calli gave rise to somatic embryos and then converted into plantlets on MS medium containing 100 mg/L kanamycin. Transgenic plants were regenerated in the same medium. Southern blot analysis confirmed that the Prx gene was inserted into the genome of the plants. To further study we selected the transgenic plant lines with enhanced tolerance against methyl viologen (MV). When sweetpotato leaf discs were subjected to methyl MV at $20{\mu}M$, transgenic plants showed about 40% higher tolerance than non-transgenic or empty vector-transformed plants.

HepG2 세포의 산화적 손상에 대한 산삼 추출물의 보호효과 - DNA chip을 이용하여 -

  • Kim, Hyung-Seok;Park, Hee-Soo;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.10 no.1 s.22
    • /
    • pp.121-135
    • /
    • 2007
  • Objectives : This study was carried out to examine protective effect of wild ginseng extract on HepG2 human hepatoma cell line against tert-Butyl hydroperoxide (t-BHP)-induced oxidative damage. Methods : To evaluate protective effect of wild ginseng extract against t-BHP induced cytotoxicity, LDH level and activity of glutathione peroxidase and reductase were measured. Gene expression was also measured using DNA microarray. Results : Wild ginseng extract showed a significant protective effect against t-BHP-induced cytotoxicity in HepG2 cell line. It is not, however, related with the activities of glutathione peroxidase and glutathione reductase. Analysis of gene expression using DNA chip, demonstrated that 28 genes were up-regulated in t-BHP only group. Five genes - selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, serfiredoxin 1 homolog - may be related with the protective effect of wild ginseng extract. Conclusions : Based on the results, a protective effect of wild ginseng extract against t-BHP-induced oxidative damage in HepG2 cell line is not associated with the activities of glutathione peroxidase and glutathione reductase, but with the expression of selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, and serfiredoxin 1 homolog.