DOI QR코드

DOI QR Code

Artificial Oxidation of Cysteine Residues in Peroxiredoxin 6 Detected by Twodimensional Gel Electrophoresis and Capillary Liquid Chromatography-Electrospray Mass Spectrometry

  • Kimata, Junko (Thermo Fisher Scientific) ;
  • Shigeri, Yasushi (Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Yoshida, Yasukazu (Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Niki, Etsuo (Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Kinumi, Tomoya (National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST))
  • Received : 2011.12.12
  • Accepted : 2012.02.21
  • Published : 2012.03.15

Abstract

Artificially oxidized cysteine residues in peroxiredoxin 6 (Prx6) were detected by electrospray interface capillary liquid chromatography-linear ion trap mass spectrometry after the preparation of two-dimensional gel electrophoresis (2D-GE). We used Prx6 as a model protein because it possesses only two cysteine residues at the 47th and 91st positions. The spot of Prx6 on 2D-GE undergoes a basic (isoelectric point, pI 6.6) to acidic (pI 6.2) shift by exposure to peroxide due to selective overoxidation of the active-site cysteine Cys-47 but not of Cys-91. However, we detected a tryptic peptide containing cysteine sulfonic acid at the 47th position from the basic spot and a peptide containing both oxidized Cys-47 and oxidized Cys-91 from the acidic spot of Prx6 after the separation by 2D-GE. We prepared two types of oxidized Prx6s: carrying oxidized Cys-47 (single oxidized Prx6), and other carrying both oxidized Cys-47 and Cys-91 (double oxidized Prx6). Using these oxidized Prx6s, the single oxidized Prx6 and double oxidized Prx6 migrated to pIs at 6.2 and 5.9, respectively. These results suggest that oxidized Cys-47 from the basic spot and oxidized Cys-91 from the acidic spot are generated by artificial oxidation during sample handling processes after isoelectric focusing of 2D-GE. Therefore, it is important to make sure of the origin of cysteine oxidation, if it is physiological or artificial, when an oxidized cysteine residue(s) is identified.

Keywords

References

  1. Lopez, J. L. J. Chromatogr. B 2007, 849, 190. https://doi.org/10.1016/j.jchromb.2006.11.049
  2. Kinumi, T.; Ogawa, Y.; Kimata J.; Saito, Y.; Yoshida Y.; Niki, E. Free Radic. Res. 2005, 39, 1335. https://doi.org/10.1080/10715760500306695
  3. Sultana, R.; Boyd-Kimball, D.; Poon, H. F.; Cai, J.; Pierce W. M.; Klein, J. B.; Merchant, M.; Markesbery, W. R.; Butterfield, D. A. Neurobiol. Aging 2006, 27, 1564. https://doi.org/10.1016/j.neurobiolaging.2005.09.021
  4. Yoshida, Y.; Yoshikawa, A.; Kinumi, T.; Ogawa, Y.; Saito, Y.; Ohara, K.; Yamamoto, H.; Imai, Y.; Niki, E. Neurobiol. Aging 2008, 30, 174. https://doi.org/10.1016/j.neurobiolaging.2007.06.012
  5. Poole, L. B.; Claiborne, A. J. Biol. Chem. 1989, 264, 12330.
  6. Fu, X.; Kassim, S. Y.; Parks, W. C.; Heinecke, J. W. J. Biol. Chem. 2001, 276, 41279. https://doi.org/10.1074/jbc.M106958200
  7. Rabilloud, T.; Heller, M.; Gasnier, F.; Luche, S.; Rey, C.; Aebersold, R.; Benahmed, M.; Louisot, P.; Lunardi, J. J. Biol. Chem. 2002, 277, 19396. https://doi.org/10.1074/jbc.M106585200
  8. Kinumi, T.; Kimata, J.; Taira, T.; Ariga, H.; Niki, E. Biochem. Biophys. Res. Commun. 2004, 317, 722. https://doi.org/10.1016/j.bbrc.2004.03.110
  9. Jia, Y.; Buehler, P. W.; Boykins, R. A.; Venable, R. M.; Alayash, A. I. J. Biol. Chem. 2007, 282, 4894. https://doi.org/10.1074/jbc.M609955200
  10. Rhee, S. G.; Chae, H. Z.; Kim, K. Free Radic. Biol. Med. 2005, 38, 1543. https://doi.org/10.1016/j.freeradbiomed.2005.02.026
  11. Manevich, Y.; Feinstein, S. I.; Fisher, A. B. Proc. Natl. Acad. Sci. USA 2004, 101, 3780. https://doi.org/10.1073/pnas.0400181101
  12. Wagner, E.; Luche, S.; Penna, L.; Chevallet, M.; Van Dorsselaer, A.; Leize-Wagner; E.; Rabilloud, T. Biochem. J. 2002, 366, 777. https://doi.org/10.1042/bj20020525
  13. Kinumi, T.; Shimomae, Y.; Arakawa, R.; Tatsu, Y.; Shigeri, Y.; Yumoto, N.; Niki, E. J. Mass Spectrom. 2006, 41, 103. https://doi.org/10.1002/jms.973
  14. Tojo, H. J. Chromatogr. A 2004, 1056, 223. https://doi.org/10.1016/j.chroma.2004.06.122
  15. Muller, D. R.; Schindler, P.; Coulot, M.; Voshol, H.; van Oostrum, J. J. Mass Spectrom.1999, 34, 336. https://doi.org/10.1002/(SICI)1096-9888(199904)34:4<336::AID-JMS765>3.0.CO;2-U
  16. Herbert, B.; Galvani, M.; Hamdan, M.; Olivieri, E.; MacCarthy, J.; Pedersen, S.; Righetti, P. G. Electrophoresis 2001, 22, 2046. https://doi.org/10.1002/1522-2683(200106)22:10<2046::AID-ELPS2046>3.0.CO;2-C
  17. Hamdan, M.; Galvani, M.; Righetti, P. G. Mass Spectrom. Rev. 2001, 20, 121. https://doi.org/10.1002/mas.10000
  18. Plowman, J. E.; Flanagan, L. M.; Paton, L. N.; Fitzgerald, A. C.; Joyce, N. I.; Bryson, W. G. Proteomics 2003, 3, 942. https://doi.org/10.1002/pmic.200300419
  19. Chiari, M.; Ettori, C.; Righetti, P. G.; Colonna, S.; Gaggero, N; Negri, A. Electrophoresis 1991, 12, 376. https://doi.org/10.1002/elps.1150120510
  20. Sun, G.; Anderson, V. E. Electrophoresis 2004, 25, 959. https://doi.org/10.1002/elps.200305800

Cited by

  1. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications vol.28, pp.9, 2017, https://doi.org/10.1007/s13361-017-1676-1