DOI QR코드

DOI QR Code

Selection of transgenic sweetpotato plants expressing 2-Cys peroxiredoxin with enhanced tolerance to oxidative stress

Peroxiredoxin 유전자 발현 산화스트레스 내성 형질전환 고구마의 선발

  • Kim, Myoung-Duck (Environmental Biotechnology Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yang, Kyoung-Sil (Environmental Biotechnology Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kwon, Suk-Yoon (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Sang-Yeol (Division of Applied Life Science, EB-NCRC and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kwak, Sang-Soo (Environmental Biotechnology Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Haeng-Soon (Environmental Biotechnology Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 김명덕 (한국생명공학연구원 환경바이오연구센터) ;
  • 양경실 (한국생명공학연구원 환경바이오연구센터) ;
  • 권석윤 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 이상열 (경상대학교 국가핵심연구센터) ;
  • 곽상수 (한국생명공학연구원 환경바이오연구센터) ;
  • 이행순 (한국생명공학연구원 환경바이오연구센터)
  • Published : 2009.03.31

Abstract

In order to develop transgenic sweetpotato plants [Ipomoea batatas (L.) Lam. cv. Yulmi] with enhanced tolerance to oxidative stress, we constructed transformation vectors expressing 2-Cys peroxiredoxin (Prx) gene under the control of the stress-inducible SWPA2 or enhanced 35S promoter (named as SP or EP). Transgenic sweetpotato plants were attempted to generate from embryogenic calli using an Agrobacterium-mediated transformation system. Embryogenic calli gave rise to somatic embryos and then converted into plantlets on MS medium containing 100 mg/L kanamycin. Transgenic plants were regenerated in the same medium. Southern blot analysis confirmed that the Prx gene was inserted into the genome of the plants. To further study we selected the transgenic plant lines with enhanced tolerance against methyl viologen (MV). When sweetpotato leaf discs were subjected to methyl MV at $20{\mu}M$, transgenic plants showed about 40% higher tolerance than non-transgenic or empty vector-transformed plants.

산화스트레스에 내성을 지닌 형질전철 고구마 식물체를 개발하기 위해서 산화스트레스에 의해 발현이 강하게 유도되는 SWPA2 프로모터 또는 CaMV 35S 프로모터에 2-Cys peroxiredoxin (Prx) 유전자가 발현되도록 연결한 형질전철 벡터 (pSP-K, pEP-K)를 제작한 후, 각각 Agrobacterium 매개로 형질전환 하였다. 카나마이신 저항성 배발생 캘러스로부터 체세포배발생 과정을 거쳐 100mg/L kanainycin이 포함된 MS 배지에서 소식물체로 발달하였다. Southern 분석으로 외래 유전자가 안정적으로 고구마 게놈 내로 삽입되었음을 확인하였다. 형질전환 고구마 잎 조직을 대상으로 $20{\mu}M$ methyl viologen에 대한 내성 검정을 조사하여 형질전환 고구마 식물체가 비형질전환 식물체 또는 벡터 대조구 식물체 보다 40% 정도 높은 신화스트레스에 대한 내성을 보여주었다. 선발된 형질전환 식물계는 저온, 건조 등의 여러 기지 환경스트레스 내성검정에 이용될 것이며 향후 복합재해 내성 고구마 계통육성에 이용될 수 있을 것으로 기대된다.

Keywords

References

  1. Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049-1054 https://doi.org/10.1104/pp.107.4.1049
  2. Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygen an dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  3. Baier M, Dietz KJ (1999) Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis. Evidence from transgenic Arabidopsis. Plant Physiol 119:1407-1414 https://doi.org/10.1104/pp.119.4.1407
  4. Cheong NE, Choi YO, Lee KO, Kim WY, Jung BG, Chi YH, Jeong JS, Kim K, Cho MJ, Lee SY (1999) Molecular cloning, expression, and functional characterization of a 2-Cys-peroxiredoxin in Chinese cabbage. Plant Mol Biol 40:825-834 https://doi.org/10.1023/A:1006271823973
  5. Chi YH, Moon JC, Park JH, Kim HS, Zulfugarov IS, Fanata WI, Jang HH, Lee JR, Lee YM, Kim ST, Chung YY, Lim CO, Kim JY, Yun D-J, Lee CH, Lee KO, Lee SY (2008) Abnormal Chloroplast development and growth inhibition in rice thioredoxin m Knock-down plants. Plant Physiol 148:808-817 https://doi.org/10.1104/pp.108.123547
  6. Inze D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:166-172 https://doi.org/10.1016/0958-1669(95)80024-7
  7. Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW, Choi YO, Kim WY, Kang JS, Cheong GW, Yun DJ, Rhee SG, Cho MJ, Lee SY (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117:625-635 https://doi.org/10.1016/j.cell.2004.05.002
  8. Kim KY, Kwon SY, Lee HS, Hur YK, Bang JW, Kwak SS (2003) A novel oxidative stress-inducible peroxidase promoter from sweet potato: molecular cloning and characterization in transgenie tobacco plants and cultured cells. Plant Mol Biol 51:831-838 https://doi.org/10.1023/A:1023045218815
  9. Kwon EJ, Kwon SY, Kim MZ, Lee JS, Ahn YS, Jeong BC, Kwak SS, Lee HS (2002a) Plant regeneration of major cultivars of sweetpotato (Ipomoea batatas) in Korea via somatic embryogenesis. Korean J Plant Biotechnol 29:189-192 https://doi.org/10.5010/JPB.2002.29.3.189
  10. Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002b) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25:873-882 https://doi.org/10.1046/j.1365-3040.2002.00870.x
  11. Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347-353 https://doi.org/10.1078/0176-1617-00926
  12. Lee KO, Jang HH, Jung BG, Chi YH, Lee JY, Choi YO, Lee JR, Lim CO, Cho MJ, Lee SY (2000) Rice 1 Cys-peroxiredoxin overexpressed in transgenic tobacco does not maintain dormancy but enhanceds antioxidant activity. FEBS Lett 486:103-106 https://doi.org/10.1016/S0014-5793(00)02230-4
  13. Lim S, Kim YH, Kim SH, Kwon SY, Lee HS, Kim JS, Cho KY, Paek KY, Kwak SS (2007) Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol Breeding 19:227-239 https://doi.org/10.1007/s11032-006-9051-0
  14. Lim S, Yang KS, Kwon SY, Paek KY, Kwak SS, Lee HS (2004) Agrobacterim-i-mediated genetic transformation and plant regeneration of sweetpotato (Ipomoea batatas). Korean J Plant Biotechnol 31:267-271 https://doi.org/10.5010/JPB.2004.31.4.267
  15. Min SR, Jeong WJ, Lee YB, Uu JR (1998) Genetic transformation of sweetpotato by particle bombardment, korean J Plant Tiss Cult 25:329-333
  16. Moon HJ, Lee BY, Choi G, Shin DJ, Prasad T, Lee OS. Kwak SS, Kim DH, Nam JS, Bahk JD, Hong JC, Lee SY, Cho MJ, Lim CO, Yun D-J (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate celluar redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci 100:358-363 https://doi.org/10.1073/pnas.252641899
  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  18. Oberschall A, Deak M, Torok K, Saa L, Vass 1, Kovacs I, Feher A, Dudits D, Horvath GV (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J 24:437-446 https://doi.org/10.1046/j.1365-313x.2000.00885.x
  19. Slooten L, Capiau K, Van Camp W, Van Montagu M, Sybesma C, Inze D (1995) factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplants. Plant Physiol 107:737-750 https://doi.org/10.1104/pp.107.3.737
  20. Tang Li, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS, Lee HS (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380-1386 https://doi.org/10.1007/s00299-006-0199-1
  21. Tang Li, Kwon SY, Kwak SS, Sung CK, Lee HS (2004a) Selection of transgenic potato plants expressing both CuZnSOD and APX in chloroplasts with enhanced tolerance to oxidative stress. Korean J Plant Biotechnol 31:109-113 https://doi.org/10.5010/JPB.2004.31.2.109
  22. Tang Li, Kwon SY, Yun DJ, Kwak SS, Lee HS (2004b) Selection of transgenic potato plants expressing NDP kinase 2 gene with enhanced tolerance to oxidative stress. Korean J Plant Biotechnol 31:191-195 https://doi.org/10.5010/JPB.2004.31.3.191
  23. Tang Li, Kim MD, Yang KS, Kwon SY, Kim SH, Kim JS, Kwak SS, Lee HS (2008) enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Res 17:705-715 https://doi.org/10.1007/s11248-007-9155-2

Cited by

  1. Agrobacterium tumefaciens-Mediated Transformation of the Halophyte Leymus chinensis (Trin.) vol.30, pp.5, 2012, https://doi.org/10.1007/s11105-012-0434-6