• Title/Summary/Keyword: permeabilized cell

Search Result 29, Processing Time 0.019 seconds

Design of Denitrification Reactor by Using Permeabilized and Immobilized Paracoccus denitrificans (Permeabilized Paracoccus denitrificans를 이용한 고정화 균주의 탈질화 반응기 설계)

  • Yun, Mi-Sun;Song, Ju-Yeong;Park, Keun-Ho
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.100-105
    • /
    • 2005
  • Removal of nitrogen compound from waste water is essential and often accomplished by biological process. Denitrification bacterium, Paracoccus denitrificans (KCTC 2350) is employed to estimate the denitrification ability and the characteristics. In the immobilized biological reactor system, the measurement of absolute amount of active strain in the reactor is comparatively difficult or impossible. In this. study, a reactor was designed with the unwoven texture wrapped peep holed plastic tube to calculate the absolute amount of active strain by comparing the activity of the permeabilized and or immobilized reactor and the free cell reactor The reactor system was continuous stirred tank reactor and the reaction rate of substrate consumption was assumed to satisfy the Michaelis-Menten equation. The effluent concentration of nitrate and nitrite was measured to estimate the apparent parameter of Michaelis-Menten equation. As a result, we found that the amount of immobilized active strain was figured out to be half of the total active strain in the reactor and the time required to be reached in the equilibrium state in the permeabilized and or immobilized reactor system was figured out to be shorter than that of the free cell reactor system.

Integrated Whole-Cell Biocatalysis for Trehalose Production from Maltose Using Permeabilized Pseudomonas monteilii Cells and Bioremoval of Byproduct

  • Trakarnpaiboon, Srisakul;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1054-1063
    • /
    • 2022
  • Trehalose is a non-conventional sugar with potent applications in the food, healthcare and biopharma industries. In this study, trehalose was synthesized from maltose using whole-cell Pseudomonas monteilii TBRC 1196 producing trehalose synthase (TreS) as the biocatalyst. The reaction condition was optimized using 1% Triton X-100 permeabilized cells. According to our central composite design (CCD) experiment, the optimal process was achieved at 35℃ and pH 8.0 for 24 h, resulting in the maximum trehalose yield of 51.60 g/g after 12 h using an initial cell loading of 94 g/l. Scale-up production in a lab-scale bioreactor led to the final trehalose concentration of 51.91 g/l with a yield of 51.60 g/g and productivity of 4.37 g/l/h together with 8.24 g/l glucose as a byproduct. A one-pot process integrating trehalose production and byproduct bioremoval showed 53.35% trehalose yield from 107.4 g/l after 15 h by permeabilized P. moteilii cells. The residual maltose and glucose were subsequently removed by Saccharomyces cerevisiae TBRC 12153, resulting in trehalose recovery of 99.23% with 24.85 g/l ethanol obtained as a co-product. The present work provides an integrated alternative process for trehalose production from maltose syrup in bio-industry.

Continuous Production of Sorbitol with Permeabilized Zymomonas mobilis Immobilized in Alginate and Chitin (알저네이트 및 카이틴 고정화 Zymomonas mobilis 에 의한 쏠비톨의 연속생산)

  • 최도진;김원극전억한
    • KSBB Journal
    • /
    • v.5 no.3
    • /
    • pp.223-227
    • /
    • 1990
  • This study describes the sorbitol production with permeabilized cells of Zymomonas mobilis immobilized in Ca-alginate. Toluene treated cells lose glucose-fructose oxidoreductase activity due to leaking of enzyme from the cells. In order to prevent this leakage, the permeabilized cells were immobilized in alginate and chitin. No significant loss of enzyme activity was apparent during 210h operation in a continuous process. The productivity of the continuous process was estimated to be about 3.5g/l -h for sorbitol at dilution rate $0.2h^{-1}$.

  • PDF

Bioelectrochemical Denitrification Using Permeabilized Ochrobactrum anthropi SY509

  • Choi Kyung-Oh;Song Seung-Hoon;Kim Yang-Hee;Park Doo-Hyun;Yoo Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.678-682
    • /
    • 2006
  • To remove nitrate from wastewater, a novel bioelectrochemical denitrification system is introduced. In this proposed system, biological reactions are coupled with reactions on the electrode, whereby the electrons are transferred to the bacterial enzymes via a mediator as an electron carrier. The denitrification reaction was achieved with permeabilized Ochrobactrum anthropi SY509 containing denitrifying enzymes, such as nitrate reductase, nitrite reductase, and nitrous oxide reductase, and methyl viologen was used as the mediator. The electron transfer from the electrode to the enzymes in the bacterial cells was confirmed using cyclic voltammetry. A high removal efficiency of nitrate was achieved when the bioelectrochemical system was used with the permeabilized cells. Furthermore, when the permeabilized cells were immobilized to a graphite felt electrode using a calcium alginate matrix containing graphite powder, a high removal efficiency was achieved (4.38 nmol/min mg cell) that was comparable to the result when using the free permeabilized cells.

Permeabilization of Ochrobactrum anthropi SY509 Cells with Organic Solvents for Whole Cell Biocatalyst

  • Park, Kyung-Oh;Song, Seung-Hoon;Yoo, Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.147-150
    • /
    • 2004
  • Permeabilization is known to overcome cell membrane barriers of whole cell biocatalysts. The use of organic solvents is advantageous in terms of cost, simplicity, and efficiency. In this study, Ochrobactrum anthropi SY509 was permeabilized with various organic solvents. Treatment with organic solvents resulted in lower permeability barriers due to falling out lipids of the cell membrane. Therefore, permeabilized cells showed higher enzyme activity with no cell viability. Among various organic solvents, 0.5% (v/v) chloroform was selected as the most efficient permeabilizing reagent. Changes in the cell membrane structure were observe d and the residual amounts of phospholipids of the cell membrane were measured to investigate the mechanism of the improved permeability.

Effect of Glutaraldehyde Treatment on Stability of Permeabilized Ochrobactrum anthropi SY509 in Nitrate Removal

  • Park, Young-Tae;Park, Jae-Yeon;Park, Kyung-Moon;Choi, Suk-Soon;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1803-1808
    • /
    • 2008
  • For practical application, the stability of permeabilized Ochrobactrum anthropi SY509 needs to be increased, as its half-life of enzymatic denitrification is only 90 days. As the cells become viable after permeabilization treatment, this can cause decreased activity in a long-term operation and induce breakage of the immobilization matrix. However, the organic solvent concentration causing zero cell viability was 50%, which is too high for industrial application. Thus, whole-cell immobilization using glutaraldehyde was performed, and 0.1% (v/v) glutaraldehyde was determined as the optimum concentration to maintain activity and increase the half-life. It was also found that 0.1% (v/v) glutaraldehyde reacted with 41.9% of the total amine residues on the surface of the cells during the treatment. As a result, the half-life of the permeabilized cells was increased from 90 to 210 days by glutaraldehyde treatment after permeabilization, and no cell viability was detected.

Enzyme Immobilized Reactor Design for Ammonia Removal from Waste Water

  • Song, Ju-Yeong;Chung, Soo-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.77-81
    • /
    • 1997
  • Removal of nitrogen compound from waste water is essential and often accomplished by biological process. To prevent washout and to develop an efficient bioreactor, immobilization of sutibal microorganisms could be sensible approach. Strains and permeabilized cell encapsulated in cellulose nitrate microcapsules and immobilized on polystyrene films were prepared by the method described in the previous study. In the wastewater treatment system, nitrification of ammonia component is generally known as rate controlling step. To enhance the rate of nitrification, firstly nitrifying strains Nitrosomonas europaea(IFO14298), are permeabilized chemically, and immobilized on polystyrene films and secondly oxidation rates of strain system and permeabilized strain system are compared in the same condition. with 30 minute permeabilized cells, it took about 25 hours to oxidize 70% of ammonia in the solution, while it took about 40 hours to treat same amount of ammonia with untreated cells. All the immobilization procedures did not harm to the enzyme activity and no mass transfer resistance through the capsule well was shown. In the durability test of immobilized system, the system showed considerable activity for the repeated operation for 90 days. With these results, the system developed in this study showed the possibility to be used in the actual waste water treatment system.

  • PDF

Cofactor Regeneration Using Permeabilized Escherichia coli Expressing NAD(P)+-Dependent Glycerol-3-Phosphate Dehydrogenase

  • Rho, Ho Sik;Choi, Kyungoh
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1346-1351
    • /
    • 2018
  • Oxidoreductases are effective biocatalysts, but their practical use is limited by the need for large quantities of NAD(P)H. In this study, a whole-cell biocatalyst for NAD(P)H cofactor regeneration was developed using the economical substrate glycerol. This cofactor regeneration system employs permeabilized Escherichia coli cells in which the glpD and gldA genes were deleted and the gpsA gene, which encodes $NAD(P)^+-dependent$ glycerol-3-phosphate dehydrogenase, was overexpressed. These manipulations were applied to block a side reaction (i.e., the conversion of glycerol to dihydroxyacetone) and to switch the glpD-encoding enzyme reaction to a gpsA-encoding enzyme reaction that generates both NADH and NADPH. We demonstrated the performance of the cofactor regeneration system using a lactate dehydrogenase reaction as a coupling reaction model. The developed biocatalyst involves an economical substrate, bifunctional regeneration of NAD(P)H, and simple reaction conditions as well as a stable environment for enzymes, and is thus applicable to a variety of oxidoreductase reactions requiring NAD(P)H regeneration.

Isolation and Characterization of Enterobacter sp. Producing Galacto-oligosaccharides

  • YANG, JI-WON;HYUN-JAE SHIN;SANG-PIL YEOM;BYUNG-DAE YUN;MIN-HONG KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.343-348
    • /
    • 1994
  • Enterobacter sp. producing -$\beta$-galactosidase with high transgalactosylation activity was isolated from dairy wastewater. The isolate had common biochemical features to E. aerogenes and E. cloacae. Enzyme production increased as the cell mass increased with optimum enzyme activity of 0.21 Unit/mg-protein (o-nitro-phenyl-$\beta$ -D-galactoside (ONPG) as substrate) until 8 hr of culture. Whole cells permeabilized by toluene were used to produce galacto-oligosaccharide. Optimum toluene concentration, temperature and pH for -$\beta$-galactosidase activity of permeabilized whole cells were 10% (v/v), $50^{\circ}C$ and 6.0, respectively. A maximum of 38% (w/w) of galacto-oligosaccharide was obtained with lactose concentration of 20% (w/w) at $40^\{\circ}C$ and pH 6.0.

  • PDF

Sorbitol Production by Zymomonas mobilis Immobilized in Calcium Alginate Gels and Glutaraldehyde (알지네이트 및 글루타르알데하이드 고정화 Zymomonas mobilis에 의한 쏠비톨 생산)

  • Jung, In-Ho;Choi, Do-Jin;Park, Cheol-Jin;Chun, Uck-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.7
    • /
    • pp.812-816
    • /
    • 1990
  • This study describes the sorbitol production with permeabilized cells of Zymomonas mobilis immobilized in Ca-alginate. Toluene treated cells lose activity of glucose-fructose oxidoreductase due to the leaking of enzyme from the cells. To prevent this leakage, the permeabilized cells were treated with 0.25% glutaraldehyde by stirring for 1 h at room temperature. A continuous process with glutaraldehyde treated cells was developed and no significant reduction in the degree of conversion occurred during 210 h operation. The productivities were estimated to be about $7.2{\sim}7.5\;g/l-h$ for sorbitol at dilution rate $0.18\;h^{-1}$.

  • PDF