Browse > Article

Bioelectrochemical Denitrification Using Permeabilized Ochrobactrum anthropi SY509  

Choi Kyung-Oh (School of Chemical and Biological Engineering, Seoul National University)
Song Seung-Hoon (Bio-MAX Institute, Seoul National University)
Kim Yang-Hee (School of Chemical and Biological Engineering, Seoul National University)
Park Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Yoo Young-Je (School of Chemical and Biological Engineering, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.5, 2006 , pp. 678-682 More about this Journal
Abstract
To remove nitrate from wastewater, a novel bioelectrochemical denitrification system is introduced. In this proposed system, biological reactions are coupled with reactions on the electrode, whereby the electrons are transferred to the bacterial enzymes via a mediator as an electron carrier. The denitrification reaction was achieved with permeabilized Ochrobactrum anthropi SY509 containing denitrifying enzymes, such as nitrate reductase, nitrite reductase, and nitrous oxide reductase, and methyl viologen was used as the mediator. The electron transfer from the electrode to the enzymes in the bacterial cells was confirmed using cyclic voltammetry. A high removal efficiency of nitrate was achieved when the bioelectrochemical system was used with the permeabilized cells. Furthermore, when the permeabilized cells were immobilized to a graphite felt electrode using a calcium alginate matrix containing graphite powder, a high removal efficiency was achieved (4.38 nmol/min mg cell) that was comparable to the result when using the free permeabilized cells.
Keywords
Bioelectrochemical denitrification; nitrate removal; nitrate reductase; wastewater treatment;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Kano, K. and T. Ikeda. 2000. Fundamentals and practices of mediated bioelectrocatalysis. Anal. Sci. 16: 1013-1021   DOI   ScienceOn
2 Lim, J. S., S. W. Park, J. W. Lee, K. K. Oh, amd S. W. Kim. 2005. Immobilization of Penicillium citrinum by entrapping cells in calcium alginate for the production of neofructooligosaccharides. J. Microbiol. Biotechnol. 15: 1317-1321   과학기술학회마을
3 Torimura, M., H. Yoshida, K. Kano, T. Ikeda, T. Yoshida, and T. Nagasawa. 2000. Bioelectrochemical transformation of nicotinic acid into 6-hydroxynicotinic acid on Pseudomonas fluorescens TN5-immobilized column electrolytic flow system. J. Mol. Catal. B Enzym. 8: 265-273   DOI   ScienceOn
4 Vilker, V. L., V. Reipa, M. Mayhew, and M. J. Holden. 1999. Challenges in capturing oxygenase activity in vitro. J. Am. Oil Chem. Soc. 76: 1283-1289   DOI
5 Felix, H. 1982. Permeabilized cells. Anal. Biochem. 120: 211-234   DOI   ScienceOn
6 Knowles, R. 1982. Denitrification. Microbiol. Rev. 46: 43-70
7 Park, D. H., M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-2917
8 Shumilin, I. A., V. V. Nikandrov, V. O. Popov, and A. A. Krasnovsky. 1992. Photogeneration of NADH under coupled action of CdS semiconductor and hydrogenase from Alcaligenes eutrophus without exogenous mediators. FEBS Lett. 306: 125-128   DOI   ScienceOn
9 Schuhmann, W. 2002. Amperometric enzyme biosensors based on optimized electron-transfer pathways and nonmanual immobilization procedures. Rev. Mol. Biotech. 82: 425-441   DOI   ScienceOn
10 Shapleigh, J. P., K. J. P. Davies, and W. J. Payne. 1987. Detergent inhibition of nitric-oxide reductase activity. Biochim. Biophys. Acta 911: 334-340   DOI
11 Jung, S. K., Y. R. Chae, J. M. Yoon, B. W. Cho, and K. G. Ryu. 2005. Immobilization of glucose oxidase on multi-wall carbon nanotubes for biofuel cell applications. J. Microbiol. Biotechnol. 15: 234-238   과학기술학회마을   DOI   ScienceOn
12 Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo. 2002. Effect of aeration on denitrification by Ochrobactrum anthropi SY509. Biotechnol. Bioprocess Eng. 7: 352-356   DOI   ScienceOn
13 Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411
14 Nam, Y. S., Y. S. Kim, W. S. Shin, W. H. Lee, and J. W. Choi. 2004. Electrochemical property of immobilized spinach ferredoxin on HOPG electrode. J. Microbiol. Biotechnol. 14: 1038-1042
15 Flores, M. V., C. E. Voget, and R. J. J. Ertola. 1994. Permeabilization of yeast cells (Kluyveromyces lactis) with organic solvents. Enz. Microb. Technol. 16: 340-346   DOI   ScienceOn
16 Shin, H. S., M. K. Jain, M. Chartrain, and J. G. Zeikus. 2001. Evaluation of an electrochemical bioreactor system in the biotransformation of 6-bromo-2-tetralone to 6-bromo-2- tetralol. Appl. Microbiol. Biotechnol. 57: 506-510   DOI
17 Shin, I. H., S. J. Jeon, H. S. Park, and D. H. Park. 2004. Catalytic oxidoreduction of pyruvate/lactate and acetaldehyde/ ethanol coupled to electrochemical oxidoreduction of $NAD^+$/ NADH. J. Microbiol. Biotechnol. 14: 540-546   과학기술학회마을
18 Choi, K. O., S. H. Song, and Y. J. Yoo. 2004. Permeabilization of Ochrobactrum anthropi SY509 cells with organic solvents for whole cell biocatalyst. Biotechnol. Bioprocess Eng. 9: 147-150   DOI   ScienceOn
19 Mellor, R. B., J. Ronnennberg, H. W. Campbell, and S. Diekmann. 1992. Reduction of nitrate and nitrite in water by immobilized enzymes. Nature 355: 717-719   DOI