• Title/Summary/Keyword: peristaltic pump

Search Result 53, Processing Time 0.03 seconds

The Study About Deformation of a Peristaltic Pump using Numerical Simulation (수치해석을 이용한 튜브 연동식 펌프의 변형에 대한 연구)

  • HUNG, NGUYEN BA;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.652-658
    • /
    • 2015
  • The purpose of this study is to investigate the effects of changing dimension of a soft tube in a peristaltic pump on deformation, stress and fluid flow rate of the peristaltic pump. Geometries of the peristaltic pump is created in a Catia drawing software based on specifications of a real peristaltic pump. Afterwards, the geometries of this pump is imported into a commercial Ansys software to calculate deformation, stress, and fluid flow rate of this pump. The simulation results showed that the deformation and stress of the soft tube is increased by increasing soft tube diameter from 2 mm to 4 mm. When the tube diameter is increased to 5 mm and tube thickness is reduced to 0.5 mm, the soft tube is damaged. The highest fluid flow rate could be found at the tube thickness and diameter of 1 mm and 4 mm, respectively.

A Study for Regulating Flow Fluctuation and Preventing Backflow of Peristaltic Pump (연동펌프의 유량맥동 조절과 역류현상을 방지하는 장치에 대한 연구)

  • Jeong, Yoo-seok;Lee, Cheol-Soo;Lee, Tae-Kyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.28-34
    • /
    • 2016
  • Though a peristaltic pump is a crucial element in miniaturized drug delivery systems, it has some intrinsic disadvantages such as backflow and flow fluctuation. To overcome these limitation, we have developed valve-less peristaltic pump system including orifice and stagnation chamber. we measured flow rate to investigate the performance of rotary peristaltic pump with three rollers and an elastomeric tube pumping a viscous fluid. The flow fluctuations and the backflow happen as a result from the disengagement of the contact interaction between the rollers and the tubes. Stagnation chamber installed in front of orifice plate was composed of rubber tube and gas chamber. By changing orifice hole diameter with stagnation chamber flow rate and pressure in the tube was regulated. The obtained maximum reduction ratio of flow fluctuation is 96.79%.

Design of Dissolution Apparatus for the Flow-through Cell Method Based on the Low Pulsation Peristaltic Pump (저 맥동 연동 펌프 기반 플로우 스루 셀 방식 용출 장치 설계)

  • Zhao, Jun Cheng;Cheng, Shuo;Piao, Xiang Fan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • The emergence of the flow-through cell (FTC) method has made up for the limitations of previous dissolution test methods, but the high cost of the FTC dissolution devices have seriously hindered the progression of research and application of the FTC. This new design uses a peristaltic pump to simulate the sinusoidal flow rate of a piston pump. The flow profile of each peristaltic pump was sinusoidal with a pulsation of 120 ± 1 pulses per minute, and the flow rate ranged from 1.0 - 36.0 mL/min. The flow control of each channel was adjusted independently so the flow errors of the seven channels were close to 2%. The structure of the system was simplified, and the cost was reduced through manual sampling and immersing the FTC in a water bath. The dissolution rate of the theophylline and aminophylline films was determined, and good experimental results were obtained.

디스크형 진동자를 이용하는 새로운 형태의 밸브리스 마이크로 압전 펌프

  • O, Jin-Heon;Im, Jong-Nam;Jeong, Ui-Hwan;Im, Gi-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.91-91
    • /
    • 2009
  • Piezoelectric micro-pump should contain the physical running parts like check valves for acquiring the unilateral motion of fluid from the alternating motion of actuators. But the check valves raise many problems such as abrasion or exhaustive destruction by the recursive mechanical displacement To solve these problems, we propose a novle type piezoelectric valveless micro-pump using peristaltic motion due to the traveling wave excitation. Proposed pump model is consisted of two piezoelectric ceramic plates, elastic metal body, caps for covering flow path, rubber rings for sealing tightly and disk springs for the pressurization of pump body.

  • PDF

A study on the peristaltic waveform of valveless PZT pump using disk type multi PZTs (다수 개 디스크 PZT 를 이용한 밸브리스 압전펌프의 연동구동 파형에 관한 연구)

  • Ham Y.B.;Park J.H.;Yun D.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1824-1827
    • /
    • 2005
  • For application to micro fluid control systems such as ${\mu}TAS$ (Micro Total Analysis Systems) and DDS (Drug Delivery Systems), it is very significant to handle precise and minute flow rates with low pressure pulsation. In this study, a novel valveless piezoelectric pump using peristaltic motion with three disk type PZT actuators is presented. The newly devised pump with an effective size of $70mm{\times}60mm{\times}55mm$ has three actuator layers connected in series from inlet to outlet. The PZT actuator has a maximum displacement of 240 ${\mu}m$ and a maximum force of 1.6 N. When the driving voltage for PZT actuators is sequentially applied with a certain phase shift, the pumping is performed by peristaltic motion of liquid volume. The working fluid is shut off without the driving voltage. Three methods for sequential driving are proposed and experimentally investigated. First and second methods utilize an intermittent sinusoidal waveform with phase shift of $90{\circ}\;and\;120^{\circ}$, respectively. Third method uses a rectangular waveform with phase shift of $90^{\circ}$. A controller with multi-phase shifter is designed and fabricated. Then, frequency and voltage-flow rate characteristics and load pressure-flow rate characteristics are experimentally investigated to verify the validity of the developed pump.

  • PDF

Fertigation Techniques Using Fertilizers with Peristaltic Hose Pump for Hydroponics (연동펌프를 이용한 비료염 공급 관비재배기술 연구)

  • Kim, D.E.;Lee, G.I.;Kim, H.H.;Woo, Y.H.;Lee, W.Y.;Kang, I.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study was conducted to develop the fertigation system with a peristaltic hose pump and brushless DC motor. The fertigation system was consisted of sensor, main controller, motor control unit, peristaltic pump, water supply pump, control panel, and filter. The peristaltic pump discharges liquid by squeezing the tube with rollers. Rollers attached to the external circumference of the rotor compresses the flexible tube. The fluid is contained within a flexible tube fitted inside a circular pump casing. The developed fertigation system has no mixing tank but instead injects directly a concentrated nutrient solution into a water supply pipe. The revolution speed of the peristaltic pump is controlled by PWM (Pulse width modulation) method. When the revolution speed of the peristaltic pump was 300rpm, the flow rate of the 3.2, 4.8, 6.3mm diameter tube was 202, 530, 857mL/min, respectively. As increasing revolution speed, the flow rate of the peristaltic pump linearly increased. As the inner diameter of a tube larger, a slope of graph is more steep. Flow rate of three roller was more than that of four roller. Flow rate of a norprene tube with good restoring force was more than that of a pharmed tube. As EC sensor probe was installed in direct piping in comparison with bypass piping showed good performance. After starting the system, it took 16~17 seconds to stabilize EC. The maximum value of EC was 1.44~1.7dS/m at a setting value of 1.4dS/m. The developed fertigation system showed ±0.06dS/m deviation from the setting value of EC. In field test, Cucumber plants generally showed good growth. From these findings, this fertigation system can be appropriately suitable for fertigation culture for crops.

Electromagnetic Actuators for Drug Delivery Mini-Pump (약물 공급 미니펌프용 전자기 액츄에이터)

  • Cho, Doo-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.533-534
    • /
    • 2006
  • In this paper we propose a new model of a mini-pump with peristaltic motion and present the results of the finite element analysis of an electromagnetic micro actuator. The mini-pump consists of three diaphrams made of PDMS, three permanent magnets in cylinders, printed copper coils on glass substrates, and input and output port. The size of the mini-pump is $14\;{\times}\;40\;{\times}\;5.4$ mm3 and the permanent magnet diameter 6.2 mm $\times$ thickness 2 mm. The electromagnetic force applied on the magnet was about 0.84 N when the current of coils was 1 A, then the maximum displacement of the PDMS diaphram was about 2mm.

  • PDF

Design of a Valveless Type Piezoelectric Pump for Micro-Fluid Devices

  • Kim, Hyun-Hoo;Oh, Jin-Heon;Yoon, Jae-Hun;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.65-68
    • /
    • 2010
  • The operation principle of a traveling wave rotary type ultrasonic motor can be successfully applied to the fluidic transfer mechanism of the micro-pump. This paper proposes an innovative valveless micro-pump type that uses an extensional vibration mode of a traveling wave as a volume transportation means. The proposed pump consists of coaxial cylindrical shells that join the piezoelectric ceramic ring and metal body, respectively. In order to confirm the actuation mechanism of the proposed pump model, a numerical simulation analysis was implemented. In accordance with the variations in the exciting wave mode and pump body dimension, we analyzed the vibration displacement characteristics of the proposed model, determined the optimal design condition, fabricated the prototype pump from the analysis results and evaluated its performance. The maximum flow rate was approximately $595\;{\mu}L/min$ and the highest back pressure was 0.88 kPa at an input voltage of $130\;V_{rms}$. We confirmed that the peristaltic motion of the piezoelectric actuator was effectively applied to the fluid transfer mechanism of the valveless type micro pump throughout this research.

The Flow Analysis and Evaluation of the Peristaltic Micropump (마이크로 정량펌프의 유동해석과 작동성능 평가)

  • 박대섭;최종필;김병희;장인배;김헌영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.195-202
    • /
    • 2004
  • This paper presents the fabrication and evaluation of mechanical behavior for a peristaltic micropump by flow simulation. The valve-less micropump using the diffuser/nozzle is consists of the lower plate, the middle plate, the upper plate and the tube that connects inlet and outlet of the pump. The lower plate includes the channel and the chamber, and the plain middle plate are made of glass and actuated by the piezoelectric translator. Channels and a chamber on the lower plate are fabricated on high processability silicon wafer by the DRIE(Deep Reactive Ion Etching) process. The upper plate does the roll of a pump cover and has inlet/outlet/electric holes. Three plates are laminated by the aligner and bonded by the anodic bonding process. Flow simulation is performed using error-reduced finite volume method (FVM). As results of the flow simulation and experiments, the single chamber pump has severe flow problems, such as a backflow and large fluctuation of a flow rate. It is proved that the double-chamber micropump proposed in this paper can reduce the drawback of the single-chamber one.

Valveless piezoelectric micro-pump exploiting two sided disk type vibrator (디스크형 진동자의 연동 운동을 이용하는 밸브리스 마이크로 압전 펌프)

  • Oh, Jin-Heon;Lim, Jong-Nam;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.159-159
    • /
    • 2009
  • Existence of physical moving parts (ex. check valve) produces several problems (mechanical abrasion, deterioration of reliability, limited temperature performances etc.) in driving pumps. To overcome such problems, we proposed a valveless piezoelectric micro-pump which has new type volume transferring mechanism. The proposed micro-pump has a double faced disk type vibrator that can generate peristaltic motion formed by traveling wave in each surface of a disk. This type of micro-pump is able to apply to a fluid supply system that provides two different kinds of fluid simultaneously. In this paper, we propose a simple and novel design of piezoelectric micro-pump that is peristaltically by piezoelectric actuators and allows the removal of the need for valves of other physically moving parts. The finite elements analysis on the proposed pump model was carried out to verify its operation principle using the commercial analysis software.

  • PDF