DOI QR코드

DOI QR Code

Fertigation Techniques Using Fertilizers with Peristaltic Hose Pump for Hydroponics

연동펌프를 이용한 비료염 공급 관비재배기술 연구

  • Kim, D.E. (Korea National College of Agriculture and Fisheries) ;
  • Lee, G.I. (National Academy of Agricultural Science) ;
  • Kim, H.H. (National Academy of Agricultural Science) ;
  • Woo, Y.H. (Korea National College of Agriculture and Fisheries) ;
  • Lee, W.Y. (Korea National College of Agriculture and Fisheries) ;
  • Kang, I.C. (Korea National College of Agriculture and Fisheries)
  • Published : 2015.07.30

Abstract

This study was conducted to develop the fertigation system with a peristaltic hose pump and brushless DC motor. The fertigation system was consisted of sensor, main controller, motor control unit, peristaltic pump, water supply pump, control panel, and filter. The peristaltic pump discharges liquid by squeezing the tube with rollers. Rollers attached to the external circumference of the rotor compresses the flexible tube. The fluid is contained within a flexible tube fitted inside a circular pump casing. The developed fertigation system has no mixing tank but instead injects directly a concentrated nutrient solution into a water supply pipe. The revolution speed of the peristaltic pump is controlled by PWM (Pulse width modulation) method. When the revolution speed of the peristaltic pump was 300rpm, the flow rate of the 3.2, 4.8, 6.3mm diameter tube was 202, 530, 857mL/min, respectively. As increasing revolution speed, the flow rate of the peristaltic pump linearly increased. As the inner diameter of a tube larger, a slope of graph is more steep. Flow rate of three roller was more than that of four roller. Flow rate of a norprene tube with good restoring force was more than that of a pharmed tube. As EC sensor probe was installed in direct piping in comparison with bypass piping showed good performance. After starting the system, it took 16~17 seconds to stabilize EC. The maximum value of EC was 1.44~1.7dS/m at a setting value of 1.4dS/m. The developed fertigation system showed ±0.06dS/m deviation from the setting value of EC. In field test, Cucumber plants generally showed good growth. From these findings, this fertigation system can be appropriately suitable for fertigation culture for crops.

본 연구에서는 산업분야에서 다양하게 이용되고 있는 연동펌프를 농축양액 주입장치로 사용한 관비장치를 개발하고 성능시험을 실시하였으며, 얻어진 결과는 다음과 같다. 튜브 내경별, 회전수별, 롤러수별 유량특성 시험결과 펌프 회전속도가 빨라짐에 따라 유량은 직선적으로 증가하였으며, 튜브 내경이 커질수록 기울기도 커졌으며, 롤러수가 3개일 때가 4개일 때의 유량 보다 더 많은 것으로 나타났다. 또한 튜브재질에 있어서는 복원력이 우수한 재질의 노프렌 튜브에서 유량이 많은 것으로 나타났다. 관비장치의 농축양액 주입위치에 따른 혼삽성능 실험결과 안정화 시간은 농축양액을 공급펌프의 흡입 측에 주입한 경우에는 17초, 공급펌프의 토출 측에 주입한 경우에는 16초 이었으며, EC는 안정화 구간에서 각각 1.42±0.05, 1.39±0.02 dS/m로 나타나 주입위치에 따른 영향은 크지 않은 것으로 판단된다. 측정 센서 설치위치에 따른 안정화시간은 주관에 삽입 설치한 경우에는 17초, 여수관에 설치한 경우에는 27초로 나타나 센서는 주관에 삽입 설치하는 것이 바람직한 것으로 판단된다. EC는 안정화 구간에서 각각 1.43±0.05, 1.45±0.07dS/m의 근소한 차이를 보였다. 시작기의 제어성능 실험결과 제어정밀도가 ±0.05dS/m로 나타나 제어성능이 우수한 것으로 나타났다. 농가 현장시험결과 개발한 관비장치에 의해 재배한 오이가 정상적인 생육을 하는 것으로 나타나 개발한 시험용 장치의 실용화가 이루어진다면 관비재배 농가에서 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Jang, Y. A., J. H. Moon, J. G. Lee, S. G. Lee, and S. H. Cha. 2009. Effects of Nitrogen and Potassium Sources on Growth and Yield of Strawberry 'Seolhyang' and 'Maehyang' in Fertigation Culture. Journal of Bio-Environment Control 18(4) : 436-441. (In Korean)
  2. Jun, H. J. Y. S. Shin and J. K. Suh. 2012. Soil EC and Yield and Quality of Oriental Melon (Cucumis melo L. var. makuwa Mak) as affected by Fertigation. Journal of Bio-Environment Control, 21(3) : 186-191. (In Korean)
  3. Kim, K. D., J. W. Lee, I. H. Cho, T. Y. Kim, Y. H. Woo, E. Y. Nam, and B. H. M. 2004. Determination of Daily Amount of N and K Required in Various Growth Stages and Establishment of Diagnostic Criteria Using Petiole Sap Analysis in the Semi-Forcing Culture of Cucumber. Journal of Bio-Environment Control 13(2) : 96-101. (In Korean)
  4. Lee, J. Y., B. C. Jang, J. K. Sung, S. Y. Lee, R. Y. Kim, Y. J. Lee, Y. H. Park, S. S. Kang and B. K. Hyun 2012. Evaluation of Soil and Fertilizer Management Techniques Applied by Fanners in Forcing and Semi- forcing Cucumber Cultivation Facilities. Korean J. Soil Sci. Fert. 45(6), 983-991 (In Korean)
  5. Pier, J. W. and T.A. Doerge. 1995. Nitrogen and water interactions in trickle irrigated watermelon. Soil Sci. Soc. Amer. J. 59:145-150.
  6. Rhee, H. C., J. M. Park, T. C. Seo, G. L. Choi, M. Y. Roh, and M. W. Cho. 2009. Effects of Nitrogen and Potassium Fertigation on Growth, Yield and Quality of Musk Melon (Cucumis melo. L). Journal of Bio-Environment Control 18(3) : 273-279. (In Korean)
  7. Yu, S. O. and J. H. Bae. 2004. The Effect of Fertigation Setting Point on the Growth and Fruit Quality of Sweet Pepper (Capsicum annuum L.). Journal of Bio-Environment Control 13(2) : 102-106. (In Korean)
  8. Zhang, C. H., H. M. Kang and I. S. Kim 2009. Influence of Amount of Waste Nutrient Solution and Compost on Growth and Quality of Tomato Grown by Fertigation. Journal of Bio-Environment Control 18(2): 119-123. (In Korean)
  9. 김영철, 김광용. 2002. 수경재배 비료염 및 폐액 이용 관비재배기술. 施設園藝硏究 15(2) : 20-26.
  10. 김용철. 1970. 灌肥農法에 의한 農地資源開에 관한 연구. 한국원예학회 8: 93-105.
  11. 시설원예연구소. 관비재배기술의 현황과 문제점. http//blogdaumnet/phes_greenhouse/784KB6.