• 제목/요약/키워드: periodic structures

검색결과 345건 처리시간 0.026초

외력을 받는 주기적 구조물의 진동 국부화 (Vibration Localization of a Periodic Structure Undertaking External Force)

  • 김재영;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.543-548
    • /
    • 2000
  • Vibration localization of a periodic structure with mistuning is presented in this paper. Mistuning in periodic structures can lead to an increase of the forced response which is much larger than those of perfectly tuned assembly. Thus, mistuning has a critical impact on high cycle fatigue in structures, and it is of great importance to predict the mistuned forced response in efficient manner. In this paper, forced response of a coupled pendulum is investigated to identify localization effects of periodic structures. The effects of mistuning and damping on the maximum forced response are examined. It is seen that in certain condition of mistuning and coupling, strong localization occurs and this can be significant under weak damping.

  • PDF

주기적인 강성분포를 갖는 구형쉘의 좌굴해석 (Buckling Analysis of Spherical Shells With Periodic Stiffness Distribution)

  • 정환목
    • 한국공간구조학회논문집
    • /
    • 제4권4호
    • /
    • pp.77-84
    • /
    • 2004
  • Researches on spherical shell which is most usually applied have been completed by many investigators already and generalized numerical formula was derived. But the existent researches are limited to those on spherical shell with isotropic or orthotropic roof stiffness, periodic distribution of roof stiffness that can be caused by spherical and latticed roof system is not considered. Therefore, the object of this study is to develop a structural analysis program to analyze spherical shells that have periodicity of roof stiffness distribution caused by latticed roof of large space structure, grasp buckling characteristics and behavior of structure.

  • PDF

Studies of Harmonic Performance on PBG Via Structures

  • Tong Ming-Sze;Kim Hyeong-Seok;Lu Yilong
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권2호
    • /
    • pp.81-85
    • /
    • 2005
  • This paper presents some interesting results regarding the harmonic performance on the photonic band-gap (PBG) structures formed by periodic conducting vias. Study on PBG structures has been one of the major topics in electromagnetics, microelectronics, and communications areas. In most of the studies, the band-gap filtering behavior was fulfilled by a periodic pattern of perforations on the ground planes of microstrip lines. Nevertheless, the PBG characteristics can also be realized using a periodic via-pattern along the transmission-line circuits. Hence, some of the via-typed PBG structures are studied and their frequency characteristics in terms of the scattering parameters are presented. It is found that by varying the length of vias with respect to the period pattern, different harmonic performances are observed.

Exact calculation of natural frequencies of repetitive structures

  • Williams, F.W.;Kennedy, D.;Wu, Gaofeng;Zhou, Jianqing
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.553-568
    • /
    • 1996
  • Finite element stiffness matrix methods are presented for finding natural frequencies (or buckling loads) and modes of repetitive structures. The usual approximate finite element formulations are included, but more relevantly they also permit the use of 'exact finite elements', which account for distributed mass exactly by solving appropriate differential equations. A transcendental eigenvalue problem results, for which all the natural frequencies are found with certainty. The calculations are performed for a single repeating portion of a rotationally or linearly (in one, two or three directions) repetitive structure. The emphasis is on rotational periodicity, for which principal advantages include: any repeating portions can be connected together, not just adjacent ones; nodes can lie on, and members along, the axis of rotational periodicity; complex arithmetic is used for brevity of presentation and speed of computation; two types of rotationally periodic substructures can be used in a multi-level manner; multi-level non-periodic substructuring is permitted within the repeating portions of parent rotationally periodic structures or substructures and; all the substructuring is exact, i.e., the same answers are obtained whether or not substructuring is used. Numerical results are given for a rotationally periodic structure by using exact finite elements and two levels of rotationally periodic substructures. The solution time is about 500 times faster than if none of the rotational periodicity had been used. The solution time would have been about ten times faster still if the software used had included all the substructuring features presented.

원통형 무한 배열 구조와 원통형 유한 배열 구조의 전파 특성 비교 (Comparison of Scattering Characteristics between Cylindrical Infinite and Finite Periodic Structure)

  • 정이루;홍익표;이경원;국찬호;김대환;육종관
    • 한국전자파학회논문지
    • /
    • 제26권2호
    • /
    • pp.196-203
    • /
    • 2015
  • 곡면 위상 배열 안테나나 곡면 주파수 선택 구조 등의 전파 특성을 해석하기 위해서는 원통형 배열 구조의 효율적인 해석방법에 대한 연구가 필요하다. 원통형 배열 구조가 실제 적용되는 구조는 유한 배열 구조지만, 대부분 전자기 해석은 무한 배열 구조라 가정하므로 실제 구조의 특성과 근사화한 구조의 특성 간의 오차가 발생하게 된다. 따라서 원통형 무한 배열 구조와 유한 배열 구조의 전파 특성의 비교와 분석이 필요하다. 본 논문에서는 원통형 무한 배열 구조를 해석하기 위해 원통형 Floquet harmonics 해석 방법을 적용하였으며, 원통형 유한 배열 구조를 해석하기 위해서는 너비가 좁은 스트립(strip)이 배열된 배열 구조를 가정하여 thin wire approximation을 적용한 method of moments(MoM)를 이용하였다. 본 논문에서는 원통형 유한 배열 구조와 무한 배열 구조의 전파 특성을 비교하기 위하여 투과 특성과 전류 분포를 계산하였다.

Solution of periodic notch problems in an infinite plate using BIE in conjunction with remainder estimation technique

  • Chen, Y.Z.
    • Structural Engineering and Mechanics
    • /
    • 제38권5호
    • /
    • pp.619-631
    • /
    • 2011
  • This paper provides a complex variable BIE for solving the periodic notch problems in plane plasticity. There is no limitation for the configuration of notches. For the periodic notch problem, the remainder estimation technique is suggested. In the technique, the influences on the central notch from many neighboring notches are evaluated exactly. The influences on the central notch from many remote notches are approximated by one term with a multiplying factor. This technique provides an effective way to solve the problems of periodic structures. Several numerical examples are presented, and most of them have not been reported previously.

다면체 유한요소를 이용한 복합재 구조의 주기 격자망 생성 (Periodic Mesh Generation for Composite Structures using Polyhedral Finite Elements)

  • 손동우;박종연;조영삼;임재혁;이행수
    • 한국전산구조공학회논문집
    • /
    • 제27권4호
    • /
    • pp.239-245
    • /
    • 2014
  • 강화재의 복잡한 배열로 인하여 복합재 구조에 대한 유한요소 모델링은 상당히 까다로운 문제가 될 수 있다. 본 논문에서는 복합재 구조에 대하여 효율적으로 주기 격자망을 생성시킬 수 있는 기법을 제안한다. 먼저 육면체 유한요소로 구성된 규칙적인 격자망을 준비하고, 이를 복합재 내의 강화재에 대한 표면 정보에 맞추어 깎아낸다. 강화재와 기지재 사이에서 깎여진 육면체 유한요소는 임의의 절점과 면을 가질 수 있는 다면체 유한요소에 해당한다. 일관된 알고리즘을 이용하여 육면체 유한요소를 깎아내기 때문에 강화재와 기지재 사이의 요소는 자동적으로 적합한 형태로 구성된다. 또한 대표체적영역 내에서 강화재의 주기성을 추가적으로 고려하면, 대표체적영역에 대한 각각의 주기 경계 쌍에서 절점과 요소의 형태가 모두 일치하는 주기 격자망을 효율적으로 생성시킬 수 있다. 그러므로 별도의 처리 없이 대표체적영역에 주기 경계조건을 부여할 수 있다. 수치예제에서는 본 논문에서 제안한 기법의 효용성을 검증한다.

EXISTENCE OF PERIODIC SOLUTIONS IN FERROELECTRIC LIQUID CRYSTALS

  • Park, Jinhae
    • 충청수학회지
    • /
    • 제23권3호
    • /
    • pp.571-588
    • /
    • 2010
  • We introduce the Landau-de Gennes model in order to understand molecular structures in ferroelectric liquid crystals. We investigate equilibrium configurations of the governing energy functional by means of bifurcation analysis. In particular, we obtain periodic solutions of the functional, which is a signature of a rich variety of applications of ferroelectric materials.

Improving aeroelastic characteristics of helicopter rotor blades in forward flight

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권1호
    • /
    • pp.31-49
    • /
    • 2019
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, helicopter blades, engine rotors, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness and inertia forces on a structure. The conventional method for designing a rotor blade to be free from flutter instability throughout the helicopter's flight regime is to design the blade so that the aerodynamic center (AC), elastic axis (EA) and center of gravity (CG) are coincident and located at the quarter-chord. While this assures freedom from flutter, it adds constraints on rotor blade design which are not usually followed in fixed wing design. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. In this work, we analyze the flutter characteristics of a helicopter blades with a periodic change in their sandwich material using a finite element structural model. Results shows great improvements in the flutter forward speed of the rotating blade obtained by using periodic design and increasing the number of periodic cells.

Damage identification of belt conveyor support structure using periodic and isolated local vibration modes

  • Hornarbakhsh, Amin;Nagayama, Tomonori;Rana, Shohel;Tominaga, Tomonori;Hisazumi, Kazumasa;Kanno, Ryoichi
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.787-806
    • /
    • 2015
  • Due to corrosion, a large number of belt conveyors support structure in industrial plants have deteriorated. Severe corrosion may result in collapse of the structures. Therefore, practical and effective structural assessment techniques are needed. In this paper, damage identification methods based on two specific local vibration modes, named periodic and isolated local vibration modes, are proposed. The identification methods utilize the facts that support structures have many identical members repeated along the belt conveyor and there exist some local modes within a small frequency range where vibrations of these identical members are much larger than those of the other members. When one of these identical members is damaged, this member no longer vibrates in those modes. Instead, the member vibrates alone in an isolated mode with a lower frequency. A damage identification method based on frequencies comparison of these vibration modes and another method based on amplitude comparison of the periodic local vibration mode are explained. These methods do not require the baseline measurement records of undamaged structure. The methods is capable of detecting multiple damages simultaneously. The applicability of the methods is experimentally validated with a laboratory model and a real belt-conveyor support structure.