1 |
Babu Gunda, J. and Ganguli, R. (2008), "New rational interpolation functions for finite element analysis of rotating beams", J. Mech. Sci., 50(3), 578-588.
DOI
|
2 |
Badran, H.T. (2008), "Vibration attenuation of periodic sandwich beams", M.Sc. Dissertation, Cairo University, Cairo.
|
3 |
Badran, H.T. (2018), "Improving dynamic and aeroelastic performance of helicopter rotors using periodic design and piezo active control", Ph.D. Dissertation, Cairo University, Cairo.
|
4 |
Badran, H.T., Tawfik, M. and Negm, H.M. (2017), "Improving wing aeroelastic characteristics using periodic design", Adv. Aircraft Spacecraft Sci., 4(4), 353-369.
DOI
|
5 |
Banerjee, J. and Kennedy, D. (2014), "Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects", J. Sound Vib., 333(26), 7299-7312.
DOI
|
6 |
Theodorsen, T. (1935), "General theory of aerodynamic instability and the mechanism of flutter", NACA-TR-496; Advisory Committee for Aeronautics, Langley, VA, U.S.A.
|
7 |
Thomas, J. and Abbas, B. (1975), "Finite element model for dynamic analysis of Timoshenko beam", J. Sound Vib., 41(3), 291-299.
DOI
|
8 |
Ungar, E.E. (1966), "Steady-state responses of one-dimensional periodic flexural systems", J. Acoustical Soc. America, 39(5A), 887-894.
DOI
|
9 |
Wood, E.R. and Hilzinger, K. (1963), "A method for determining the fully coupled aeroelastic response of helicopter rotor blades", Proceedings of American Helicopter Society 19th Annual National Forum, Washington, DC, May.
|
10 |
Yang, S.M. and Tsao, S.M. (1997), "Dynamics of a pretwisted blade under nonconstant rotating speed", Comput. Struct., 62(4), 643-651.
DOI
|
11 |
Yardimoglu, B. (2010), "A novel finite element model for vibration analysis of rotating tapered Timoshenko beam of equal strength", Finite Elem. Anal. Des., 46(10), 838-842.
DOI
|
12 |
Yntema, R.T. (1955), "Simplified procedures and charts for the rapid estimation of bending frequencies of rotating beams", NACA-TN-3459; National Advisory Committee for Aeronautics. Langley Aeronautical Lab., VA, U.S.A.
|
13 |
Zhou, C.W., Laine, J.P., Ichchou, M.N. and Zine, A.M. (2015), "Wave finite element method based on reduced model for one-dimensional periodic structures", J. Appl. Mech., 07(02), 1550018.
DOI
|
14 |
Lim, I.G. and Lee, I. (2009), "Aeroelastic analysis bearingless rotors with a composite flexbeam", Compos. Struct., 88(4), 570-578.
DOI
|
15 |
Lin, S.M., Lee, S.Y. and Wang, W.R. (2004), "Dynamic analysis of rotating damped beams with an elastically restrained root", J. Mech. Sci., 46(5), 673-693.
DOI
|
16 |
Loewy, R.G. (1957), "A two-dimensional approximation to the unsteady aerodynamics of rotary wings", J. Aeronaut. Sci., 24(2), 81-92.
DOI
|
17 |
McCalley, R. (1963), "Rotary inertia correction for mass matrices", Report DIG/SA: 63-73; General Electric Knolls Atomic Power Laboratory, Schenectady, New York, U.S.A.
|
18 |
Mead, D. (1996), "Wave propagation in continuous periodic structures: Research contributions from Southampton, 1964-1995", J. Sound Vib., 190(3), 495-524.
DOI
|
19 |
Mead, D. and Parthan, S. (1979), "Free wave propagation in two-dimensional periodic plates", J. Sound Vib., 64(3), 325-348.
DOI
|
20 |
Mead, D. and Yaman, Y. (1991), "The response of infinite periodic beams to point harmonic forces: A flexural wave analysis", J. Sound Vib., 144(3), 507-529.
DOI
|
21 |
Rauchenstein Jr., W.J. (2002). "A 3D Theodorsen-based rotor blade flutter model using normal modes", Ph.D. Dissertation, Naval Postgraduate School, California, U.S.A.
|
22 |
Nitzsche, F., D'Assuncao, D. and Junior, C.D.M. (2015), "Aeroelastic control of non-rotating and rotating wings using the dynamic stiffness modulation principle via piezoelectric actuators", J. Intell. Mater. Syst. Struct., 26(13), 1656-1668.
DOI
|
23 |
Norman, T.R., Shinoda, P.M., Kitaplioglu, C., Jacklin, S.A. and Sheikman, A. (2002), "Low-speed wind tunnel investigation of a full-scale UH-60 rotor system", National Aeronautics and Space Administration Moffett Field CA AMES Research Center, https://apps.dtic.mil/dtic/tr/fulltext/u2/a480625.pdf.
|
24 |
Pohit, G., Mallik, A. and Venkatesan, C. (1999), "Free out-of-plane vibrations of a rotating beam with non-linear elastomeric constraints", J. Sound Vib., 220(1), 1-25.
DOI
|
25 |
Singh, M.P. (1985), "Turbine blade dynamics - A probabilistic approach", Vib. Blades Bladed Disk Assemblies, 41-48.
|
26 |
Kee, Y.J. and Shin, S.J. (2015), "Structural dynamic modeling for rotating blades using three dimensional finite elements", J. Mech. Sci. Technol., 29(4), 1607-1618.
DOI
|
27 |
Lee, S.Y. and Lin, S.M. (1994), "Bending vibrations of rotating nonuniform Timoshenko beams with an elastically restrained root", J. Appl. Mech. T. ASME, 61(4), 949-955.
DOI
|
28 |
Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley and Sons, New York, U.S.A.
|
29 |
Bisplinghoff, R., Ashley, H. and Halfman, R. (1996), Aeroelasticity, Dover Publication Inc., Mineola, New York, U.S.A.
|
30 |
Bazoune, A., Khulief, Y.A., Stephen, N.G. and Mohiuddin, M.A. (2001), "Dynamic response of spinning tapered Timoshenko beams using modal reduction", Finite Elem. Anal. Des., 37(3), 199-219.
DOI
|
31 |
Chandiramani, N.K., Shete, C.D. and Librescu, L.I. (2003), "Vibration of higher-order-shearable pretwisted rotating composite blades", J. Mech. Sci., 45(12), 2017-2041.
DOI
|
32 |
Chen, J., Ding, Y. and Ding, H. (2016), "An efficient approach for dynamic analysis of a rotating beam using the discrete singular convolution", P. I. Mech. Eng. C. J. Mec., 230(20), 3642-3654.
DOI
|
33 |
Chung, J. and Yoo, H.H. (2002), "Dynamic analysis of a rotating cantilever beam by using the finite element method", J. Sound Vib., 249(1), 147-164.
DOI
|
34 |
Don, M., Palmeri, A., Lombardo, M. and Cicirello, A. (2015), "An efficient two-node finite element formulation of multi-damaged beams including shear deformation and rotatory inertia", Comput. Struct., 147(C), 96-106.
DOI
|
35 |
Guertin, M. (2012), "The application of finite element methods to aeroelastic lifting surface flutter", Ph.D. Dissertation, Rice University, Houston, Texas, U.S.A.
|
36 |
El-Din, M.A. and Tawfik, M. (2006), "Vibration attenuation in rotating beams with periodically distributed piezoelectric controllers", Proceedings of the 13th International Congress on Sound and Vibration (ICSV'06), Vienna, Austria, July.
|
37 |
Faulkner, M. and Hong, D. (1985), "Free vibrations of a mono-coupled periodic system", J. Sound Vib., 99(1), 29-42.
DOI
|
38 |
Filippi, M. and Carrera, E. (2015), "Flutter analysis of fixed and rotary wings through a one-dimensional unified formulation", Compos. Struct., 133, 381-389.
DOI
|
39 |
Friedman, Z. and Kosmatka, J.B. (1993), "An improved two-node Timoshenko beam finite element", Comput. Struct., 47(3), 473-481.
DOI
|
40 |
Gerstenberger, W. and Wood, E.R. (1963), "Analysis of Helicopter Aeroelastic Characteristics in High-Speed Flight", AIAA Journal, 1(10), 2366-2381.
DOI
|
41 |
Gupta, G.S. (1970), "Natural flexural waves and the normal modes of periodically-supported beams and plates", J. Sound Vib., 13(1), 89-101.
DOI
|
42 |
Hammond, C.E. (1969), "Compressibility effects in helicopter rotor blade flutter", Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, U.S.A.
|
43 |
Hollowell, S.J. and Dugundji, J. (1984), "Aeroelastic flutter and divergence of stiffness coupled, graphite/epoxy cantilevered plates", J. Aircraft, 21(1), 69-76.
DOI
|
44 |
Jones, W. and Rao, B. (1970) "Compressibility effects on oscillating rotor blades in hovering flight", AIAA Journal, 8(2), 321-329.
DOI
|
45 |
Jung, S.N., Nagaraj, V.T. and Chopra, I. (2001), "Refined structural dynamics model for composite rotor blades", AIAA Journal, 39(2), 339-348.
DOI
|
46 |
Kapur, K.K. (1966), "Vibrations of a Timoshenko beam, using finite-element approach", J. Acoustical Soc. America, 40(5), 1058-1063.
DOI
|