• 제목/요약/키워드: performance-based wind design

검색결과 235건 처리시간 0.023초

해양 조류발전용 2블레이드 터빈의 성능해석 (Performance Analysis on 2-Bladed Tidal Current Power Turbine)

  • 이강희;임진영;노유호;송승호;조철희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.236.1-236.1
    • /
    • 2010
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Due to the high tidal range of up to 9.7m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system, and its performance is determined by various design variables. In this paper, a design guideline of current generating HAT rotor and acceptable field rotor in offshore environment is proposed. To design HAT rotor model, wind mill rotor design principles and turbine theories were applied based on a field HAT rotor experimental data. To verify the compatibility of the rotor design method and to analyze the properties of design factors, 3D CFD model was designed and analysed by ANSYS CFX. The analysis results and findings are summarized in the paper.

  • PDF

탈착형 계류시스템 배치에 따른 부유식 해양구조물의 운동 및 계류성능에 관한 연구 (A Study on the Global Motion Performance of Floater and Mooring Due to Arrangement of Detachable Mooring System)

  • 이강수;김현성;김병완
    • 풍력에너지저널
    • /
    • 제14권2호
    • /
    • pp.26-33
    • /
    • 2023
  • In this study, the global response characteristics of floater and mooring for floating offshore wind turbine with a detachable mooring system are performed. Global motion and structural response result extracted from the coupled motion analysis of 10MW DTU floating offshore wind turbine with detachable mooring system modeled by high-order boundary element model and finite element mesh, were used to study the characteristics of tension on mooring lines subjected to three different types of ocean loads. Breaking limit of mooring line characterized by wind, current and wave load has a major effect on the distribution of mooring tension found in time domain analysis. Based on the numerical results of coupled motion analysis, governing equation for calculating the motion response of a floater under ocean loads, and excitation force and surge motion and tension respectively are presented using excursion curve. It is found that the response of floater is reliable and accurate for calculating the tension distributions along the mooring lines under complex loadings. This means that the minimun breaking limit of mooring system satisfied a design criteria at ultimate ocean environmental loading condtions.

The Structural Design of "China Zun" Tower, Beijing

  • Liu, Peng;Cheng, Yu;Zhu, Yan-Song
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.213-220
    • /
    • 2016
  • The "China Zun" tower in Beijing will rise to 528 meters in height and will be the tallest building in Beijing once built. Inspired by an ancient Chinese vessel, the "Zun", the plan dimensions reduce gradually from the bottom of the tower to the waist and then expand again as it rises to form an aesthetically beautiful and unique geometry. To satisfy the structural requirement for seismic and wind resistance, the structure is a dual system composed of a perimeter mega structure made of composite mega columns, mega braces, and belt trusses, and a reinforced-concrete core with steel plate-embedded walls. Advanced parametric design technology is applied to find the most efficient outer-perimeter structure system. The seismic design basically follows a mixed empirical and performance-based methodology that was verified by a shaking table test and other specimen lab tests. The tower is now half-way through its construction.

비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구 (Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter)

  • 김동은;;고행식;이혜빈;배윤혁
    • 한국해양공학회지
    • /
    • 제33권2호
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.

예측모델에 따른 태양광발전시스템의 하절기 모듈온도 예측 및 정확도 분석 (Prediction and Accuracy Analysis of Photovoltaic Module Temperature based on Predictive Models in Summer)

  • 이예지;김용식
    • 한국태양에너지학회 논문집
    • /
    • 제37권1호
    • /
    • pp.25-38
    • /
    • 2017
  • Climate change and environmental pollution are becoming serious due to the use of fossil energy. For this reason, renewable energy systems are increasing, especially photovoltaic systems being more popular. The photovoltaic system has characteristics that are affected by ambient weather conditions such as insolation, outside temperature, wind speed. Particularly, it has been confirmed that the performance of the photovoltaic system decreases as the module temperature increases. In order to grasp the influence of the module temperature in advance, several researchers have proposed the prediction models on the module temperature. In this paper, we predicted the module temperature using the aforementioned prediction model on the basis of the weather conditions in Incheon, South Korea during July and August. The influence of weather conditions (i.e. insolation, outside temperature, and wind speed) on the accuracy of the prediction models was also evaluated using the standard statistical metrics such as RMSE, MAD, and MAPE. The results show that the prediction accuracy is reduced by 3.9 times and 1.9 times as the insolation and outside temperature increased respectively. On the other hand, the accuracy increased by 6.3 times as the wind speed increased.

타워를 포함한 6kW급 수직축 풍력발전기 구조진동해석 (Structure Dynamic Analysis of 6kW Class Vertical-Axis Wind Turbine with Tower)

  • 김동현;류경중;김요한;김성복;김광원;남효우;이명구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.663-670
    • /
    • 2011
  • In this study, the design and verification of 6kW class lift-type vertical-axis wind turbine (VAWT) has been conducted using advanced CAE technique based on computational fluid dynamics (CFD), finite element method (FEM), and computational structural dynamics (CSD). Designed aerodynamic performance of the VAWT model is tested using unsteady CFD method. Designed structural safety is also tested through the evaluation of maximum induced stress level and resonance characteristics using FEM and CSD methods. It is importantly shown that the effect of master eccentricity due to rotational inertia needs to be carefully considered to additionally investigate dynamic stress and deformation level of the designed VAWT system.

  • PDF

Prediction of bridge flutter under a crosswind flow

  • Vu, Tan-Van;Lee, Ho-Yeop;Choi, Byung-Ho;Lee, Hak-Eun
    • Wind and Structures
    • /
    • 제17권3호
    • /
    • pp.275-298
    • /
    • 2013
  • This paper presents a number of approximated analytical formulations for the flutter analysis of long-span bridges using the so-called uncoupled flutter derivatives. The formulae have been developed from the simplified framework of a bimodal coupled flutter problem. As a result, the proposed method represents an extension of Selberg's empirical formula to generic bridge sections, which may be prone to one of the aeroelastic instability such as coupled-mode or single-mode (either dominated by torsion or heaving mode) flutter. Two approximated expressions for the flutter derivatives are required so that only the experimental flutter derivatives of ($H_1^*$, $A_2^*$) are measured to calculate the onset flutter. Based on asymptotic expansions of the flutter derivatives, a further simplified formula was derived to predict the critical wind speed of the cross section, which is prone to the coupled-mode flutter at large reduced wind speeds. The numerical results produced by the proposed formulas have been compared with results obtained by complex eigenvalue analysis and available approximated methods show that they seem to give satisfactory results for a wide range of study cases. Thus, these formulas can be used in the assessment of bridge flutter performance at the preliminary design stage.

퍼지 게인스케듈링을 적용한 자동착륙 유도제어 알고리즘 설계 : 윈쉬어 환경에서의 착륙 (Design of Guidance and Control Algorithm for Autolanding In Windshear Environment Using Fuzzy Gain Scheduling)

  • 하철근;안상운
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.95-103
    • /
    • 2008
  • This paper deals with the problem of autolanding for aircraft under windshear environment for which the landing trajectory is given. It is well known that the landing maneuver in windshear turbulence is very dangerous and hard for the pilot to control because windshear is unpredictable in when and where it happens and its aerodynamic characteristics are complicated. In order to accomplish satisfactory autolanding maneuver in this environment, we propose a gain-scheduled controller. The proposed controller consists of three parts: PID controller, called baseline controller, which is designed to satisfy requirements of stability and performance without considering windshear, gain scheduler based on fuzzy logic, and safety decision logic, which decides if the current autolanding maneuver needs to be aborted or not. The controller is applied to a 6-DOF simulation model of the associated airplane in order to illustrate the effectiveness of the proposed control algorithm. It is noted that a cross wind in the lateral direction is included to the simulation model. From the simulation results it is observed that the proposed gain scheduled controller shows superior performance than the case of controller without gain scheduling even in severe downburst and tailwind region of windshear. In addition, touchdown along centerline of the runway is more precise for the proposed controller than for the controller without gain scheduling in the cross wind and the tailwind.

빙해선박 상부갑판 열선의 열전달 특성에 따른 착빙방지 성능평가 및 설계기준에 관한연구 (A Study on the Anti-Icing Performance Evaluating and Design Guide by Heating Coil for Upper Deck of Icebreaking Vessels)

  • 이종찬;서영교;이춘주
    • 대한조선학회논문집
    • /
    • 제49권6호
    • /
    • pp.541-549
    • /
    • 2012
  • The study adopted a freezing prevention method of the upper deck which used heating coil, and carried out numerical analysis by using ANSYS 13.0 CFD for design guide of the vessel operating in cold region. It is based on the experimental results of the anti-icing performance tests which were carried at cold room chamber in MOERI. Numerical analysis for the design guide was performed by considering S.S.T. (Shear Stress Transport) turbulent model for flow separation effects and the turbulence which occurred in interfaces of the numerical model in order to express appropriate heat transmission phenomenon. The numerical result shows average temperature of the upper deck surface appeared similarly compared with the indoor chamber test. The design guide for optimum freezing prevention presented through heat transmission capability and interval of the heat coil in various outdoor temperature($10^{\circ}C{\sim}-30^{\circ}C$) and wind speed(1m/s~7m/s).

하이브리드 신재생에너지 시스템의 최적제어를 위한 퍼지 로직 제어기 설계 (Design of Fuzzy Logic Controller for Optimal Control of Hybrid Renewable Energy System)

  • 장성대;지평식
    • 전기학회논문지P
    • /
    • 제67권3호
    • /
    • pp.143-148
    • /
    • 2018
  • In this paper, the optimal fuzzy logic controller(FLC) for a hybrid renewable energy system(HRES) is proposed. Generally, hybrid renewable energy systems can consist of wind power, solar power, fuel cells and storage devices. The proposed FLC can effectively control the entire HRES by determining the output power of the fuel cell or the absorption power of the electrolyzer. In general, fuzzy logic controllers can be optimized by classical optimization algorithms such as genetic algorithms(GA) or particle swarm optimization(PSO). However, these FLC have a disadvantage in that their performance varies greatly depending on the control parameters of the optimization algorithms. Therefore, we propose a method to optimize the fuzzy logic controller using the teaching-learning based optimization(TLBO) algorithm which does not have the control parameters of the algorithm. The TLBO algorithm is an optimization algorithm that mimics the knowledge transfer mechanism in a class. To verify the performance of the proposed algorithm, we modeled the hybrid system using Matlab Tool and compare and analyze the performance with other classical optimization algorithms. The simulation results show that the proposed method shows better performance than the other methods.