• 제목/요약/키워드: performance-based design method

검색결과 3,694건 처리시간 0.042초

직립방파제의 케이슨 활동에 대한 최초통과확률법의 허용기준 산정 (Evaluation of Allowable Criteria in First-Passage Probability Method for Caisson Sliding of Vertical Breakwater)

  • 김승우;서경덕
    • 한국해안·해양공학회논문집
    • /
    • 제25권5호
    • /
    • pp.317-326
    • /
    • 2013
  • 확률론적 설계법은 설계변수의 불확실성을 고려할 수 있기 때문에 직립방파제의 설계에 폭넓게 사용되고 있다. 대표적인 확률론적 설계법은 부분안전계수 설계법, 신뢰성 설계법, 성능설계법 등이 있다. 특히 성능설계법은 구조물의 수명 또는 설계폭풍 지속시간 동안의 누적활동량을 계산한다. 최근 설계폭풍 동안에 개별활동량의 최초통과확률을 산정할 수 있는 시간의존 성능설계법이 개발되었다. 하지만 개발된 방법의 허용기준이 없어 구조물의 안정성을 정량적으로 평가할 수 없었다. 본 연구에서는 다양한 수심과 극치파고분포의 특성을 반영한 구조물의 단면에 대하여 최초통과확률을 산정함으로써 두 가지 한계상태에 따른 허용최초통과확률을 제안하였다. 수리가능한계상태(개별 허용활동량 0.03 m)와 극한한계상태(개별 허용활동량 0.1 m)에서 허용최초통과확률은 각각 5%와 1%로 산정되었다. 제안된 허용기준을 적용하여 기후변화에 따른 파고 증가가 방파제 안정성에 미치는 영향을 평가하였다.

Seismic performance of high strength steel frames with variable eccentric braces based on PBSD method

  • Li, Shen;Wang, Ze-yu;Guo, Hong-chao;Li, Xiao-lei
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.527-542
    • /
    • 2020
  • In traditional eccentrically braced steel frames, damages and plastic deformations are limited to the links and the main structure members are required tremendous sizes to ensure elasticity with no damage based on the force-based seismic design method, this limits the practical application of the structure. The high strength steel frames with eccentric braces refer to Q345 (the nominal yield strength is 345 MPa) steel used for links, and Q460 steel utilized for columns and beams in the eccentrically brace steel frames, the application of high strength steels not only brings out better economy and higher strength, but also wider application prospects in seismic fortification zone. Here, the structures with four type eccentric braces are chosen, including K-type, Y-type, D-type and V-type. These four types EBFs have various performances, such as stiffness, bearing capacity, ductility and failure mode. To evaluate the seismic behavior of the high strength steel frames with variable eccentric braces within the similar performance objectives, four types EBFs with 4-storey, 8-storey, 12-storey and 16-storey were designed by performance-based seismic design method. The nonlinear static behavior by pushover analysis and dynamic performance by time history analysis in the SAP2000 software was applied. A total of 11 ground motion records are adopted in the time history analysis. Ground motions representing three seismic hazards: first, elastic behavior in low earthquake hazard level for immediate occupancy, second, inelastic behavior of links in moderate earthquake hazard level for rapid repair, and third, inelastic behavior of the whole structure in very high earthquake hazard level for collapse prevention. The analyses results indicated that all structures have similar failure mode and seismic performance.

강인성과 응답 성능을 고려한 슬라이딩모드 퍼지 제어기 설계에 관한 연구 (A New Design Method of Sliding Mode Fuzzy Controller with Robust and fast Performance)

  • 박창우;이장욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.425-428
    • /
    • 1998
  • This paper proposes a new fuzzy controller using variable structure control theory. In this paper, after the time-varying fuzzy sliding surface is designed, the fuzzy rules are defined based on the variable structure control theory. This design method makes the fuzzy controller design more structured and can guarantee the stability and robustness of the fuzzy controller and overcome the shortcoming of the variable structure system. Through computer simulation and experiment of nonlinear inverted pendulum system, this thesis demonstrate that system has the robustness against disturbance and modelling error, and the tracking performance of it is improved.

  • PDF

스마트 TMD의 최적설계를 위한 파라메터 연구 (Parameter Study for Optimal Design of Smart TMD)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.123-132
    • /
    • 2017
  • A smart tuned mass damper (TMD) was developed to provide better control performance than a passive TMD for reduction of earthquake induced-responses. Because a passive TMD was developed decades ago, optimal design methods for structural parameters of a TMD, such as damping constant and stiffness, have been developed already. However, studies of optimal design method for structural parameters of a smart TMD were little performed to date. Therefore, parameter studies of structural properties of a smart TMD were conducted in this paper to develop optimal design method of a smart TMD under seismic excitation. A retractable-roof spatial structure was used as an example structure. Because dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition, control performance of smart TMD under off-tuning was investigated. Because mass ratio of TMD and smart TMD mainly affect control performance, variation of control performance due to mass ratio was investigated. Parameter studies of structural properties of a smart TMD was performed to find optimal damping constant and stiffness and it was compared with the results of optimal passive TMD design method. The design process developed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.

A simplified seismic design method for low-rise dual frame-steel plate shear wall structures

  • Bai, Jiulin;Zhang, Jianyuan;Du, Ke;Jin, Shuangshuang
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.447-462
    • /
    • 2020
  • In this paper, a simplified seismic design method for low-rise dual frame-steel plate shear wall (SPSW) structures is proposed in the framework of performance-based seismic design. The dynamic response of a low-rise structure is mainly dominated by the first-mode and the structural system can be simplified to an equivalent single degree-of-freedom (SDOF) oscillator. The dual frame-SPSW structure was decomposed into a frame system and a SPSW system and they were simplified to an equivalent F-SDOF (SDOF for frame) oscillator and an equivalent S-SDOF (SDOF for SPSW) oscillator, respectively. The analytical models of F-SDOF and S-SDOF oscillators were constructed based on the OpenSees platform. The equivalent SDOF oscillator (D-SDOF, dual SDOF) for the frame-SPSW system was developed by combining the F-SDOF and S-SDOF oscillators in parallel. By employing the lateral force resistance coefficients and seismic demands of D-SDOF oscillator, the design approach of SPSW systems was developed. A 7-story frame-SPSW system was adopted to verify the feasibility and demonstrate the design process of the simplified method. The results also show the seismic demands derived by the equivalent dual SDOF oscillator have a good consistence with that by the frame-SPSW structure.

화물터미널 집배송센터의 최적설계를 위한 분석모델 (A Performance Analysis Model for Optimal Design of Freight Terminal Layout and Operation Using AutoMod)

  • 황흥석;조규성
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2000년도 추계학술대회 및 정기총회
    • /
    • pp.275-278
    • /
    • 2000
  • This paper focuses on a performance analysis model for optimizing the freight terminal design and layout using AutoMod simulator and numerical analysis. We developed a model to analyze the freiht terminal performance per unit time and the material handling cost based on both throughput and waiting due to conjestion. We developed computer program for this model and some sample results by both numerical method and AutoMod simulator are compared.

  • PDF

상호작용 기능이 강화된 실시간 협업 설계 시스템에 관한 연구 (A Study on Real-Time Collaborative Design System for powerful interaction performance)

  • 하영명;김현수;안대건;김호찬;정해도;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1266-1269
    • /
    • 2003
  • Many studies have indicated that most of a product's cost is fixed early in its lift cycle, before the original design cycle is complete. This implies that we should consider various aspects of product lift cycle at the design stage. This means the need of collaboration in design stage. Because the Internet provides instant access to a wealth of design information, the Internet is used by the collaborative design team members as a medium to share data, information and knowledge, and in some cases for product data management and project management by integrating the Web with appropriate technologies. This paper presents a real-time collaborative design system for powerful interaction performance, based on the Internet and Web technologies. Using The system use the client/server architecture and the purpose of the system is to provide a method that enables real-time view, review and modification of the 3D model through the Internet.

  • PDF

A New Sensitivity-Based Reliability Calculation Algorithm in the Optimal Design of Electromagnetic Devices

  • Ren, Ziyan;Zhang, Dianhai;Koh, Chang Seop
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.331-338
    • /
    • 2013
  • A new reliability calculation method is proposed based on design sensitivity analysis by the finite element method for nonlinear performance constraints in the optimal design of electromagnetic devices. In the proposed method, the reliability of a given design is calculated by using the Monte Carlo simulation (MCS) method after approximating a constraint function to a linear one in the confidence interval with the help of its sensitivity information. The validity and numerical efficiency of the proposed sensitivity-assisted MCS method are investigated by comparing its numerical results with those obtained by using the conventional MCS method and the first-order reliability method for analytic functions and the TEAM Workshop Problem 22.

Reliability Design Based on System Performance-Cost Trade-off for Manufacturing facility

  • Hwang, Heung-Suk;Hwang, Gyu-Wan
    • International Journal of Reliability and Applications
    • /
    • 제2권4호
    • /
    • pp.269-280
    • /
    • 2001
  • The objective of this paper is to provide a model for effective implementation of costing RAM management in the design and procurement of production facility considering the system cost-performance trade-off. This research proposes a two-step approach of costing RAM design and test of system RAM for production facility. In Step 1, a static model is proposed to find an initial system configuration to meet the required performance based on system RAM and LCC and analyzes the trade-off relationships between various factors of RAM and LCC. In the second Step, we developed time and failure truncated models for system reliability test and analysis. For the computational purpose, we developed computer programs and have shown the sample results. By the sample test run, the proposed model has shown the possibilities to provide a good method to analyze system performance evaluation for both design and operational phase, This model can be applied to a wide variety of systems not only for costing RAM of the production facilities but also for the other kinds of equipment.

  • PDF

횡구속 콘크리트의 압축 응력-변형률 모델 : Part I. 원형단면 부재 (Stress-Strain Model for Laterally Confined Concrete : Part I. Circular Sectional Members)

  • 선창호;정혁창;김익현
    • 한국지진공학회논문집
    • /
    • 제21권1호
    • /
    • pp.49-57
    • /
    • 2017
  • In order to avoid collapse of bridges in earthquakes bridge piers are generally designed to attain sufficient ductility. This full-ductility design method has merits for securing the seismic safety readily against strong earthquakes but, it has weakness of high cost design because of excessive safety margin. Recently, in many countries with high seismic technologies, the seismic design concept tends to shift from the collapse prevention design to the performance-based one which requires different performance (damage) levels according to the structural importance. In order to establish this performance-based design method the displacement ductility of confined concrete members should be evaluated quantitatively. And the stress-strain model of confined concrete is indispensible in evaluating displacement ductility. In this study, 6 test groups with different lateral reinforcement ratios were prepared. 10 same specimens with circular section for each group were tested to obtain more reliable test results. The characteristic values necessary for composing the stress-strain model were obtained from experiments. Based on these characteristic values the new stress-strain model modifying the Hoshikuma's one has been proposed.