• Title/Summary/Keyword: performance phantom

Search Result 219, Processing Time 0.033 seconds

Abosrbed Dose Measurements and Phantom Image Ecaluation at Minimum CT Dose for Pediatric SPECT/CT Scan (소아 SPECT/CT 검사를 위한 최저조건에서의 피폭선량측정 및 팬텀의 영상평가)

  • Park, Chan Rok;Choi, Jin Wook;Cho, Seong Wook;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.82-88
    • /
    • 2014
  • Purpose: The purpose of study was to evaluate radiation dose for pediatric patients by changing tube voltage (kVp) and tube current (mA) at minimum conditions. By evaluating radiation dose, we want to provide dose reduction for pediatric patients and maintain good quality of SPECT/CT images. Materials and Methods: Discovery NM/CT 670 Scanne was used as SPECT/CT. Tube voltages are 80 and 100 kvP. Tube currents are 10, 15, 20, 25 mA. Using PMMA (Polymethyl methacrylate) Phantom, radiation dose which were calculated at center and peripheral dose and SNRD (Signal to Noise Ratio Dose) were evaluated. Using the CT performance phantom, spatial resolution was evaluated as the MTF (Modulation Transfer Function) graph. Jaszczak phantom was used for SPECT image evaluation by CNR (Contrast to Noise to Ratio). Results: Radiation dose using the PMMA phantom was higher peripheral dose than center dose about 7%. SNRD were 7.8, 8.2, 8.3, 8.8, 8.8, 9.9, 9.8, 9.6 for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA. We can distinguish 35, 45, 70, 71, 52, 58, 90, 110 linepair for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA at resolution with MTF. CNR of SPECT images using CT attenuation map were 57.8, 57.7, 57.1, 56.7, 56.6, 56.7, 56.7, 56.7% for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA. Conclusion: In this study, radiation dose for pediatric patients showed decreased low dose condition. And SNRD value was similar in all condition. Resolution showed higher value at 100kVp than 80kVp. for CNR, there was no significant difference. we should take additional study to prove better quality and dose reduction.

  • PDF

Comparison of Topographic Surveying Results using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)와 보급형 회전익 무인항공기를 이용한 지형측량 결과의 비교)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • Recently, many studies have been conducted to use fixed-wing and rotary-wing unmanned aerial vehicles (UAVs, Drones) for topographic surveying in open-pit mines. Because the fixed-wing and rotary-wing UAVs have different characteristics such as flight height, speed, time and performance of mounted cameras, their results of topographic surveying at a same site need to be compared. This study selected a construction site in Yangsan-si, Gyeongsangnam-do, Korea as a study area and compared the topographic surveying results from a fixed-wing UAV (SenseFly eBee) and a popular rotary-wing UAV (DJI Phantom2 Vision+). As results of data processing for aerial photos taken from eBee and Phantom2 Vision+, orthomosaic images and digital surface models with about 4 cm grid spacing could be generated. Comparisons of the X, Y, Z-coordinates of 7 ground control points measured by differential global positioning system and those determined by eBee and Phantom2 Vision+ revealed that the root mean squared errors of X, Y, Z-coordinates were around 10 cm, respectively.

The Effect of Thin Teflon on TLD Response for in vivo Dosimetry of Radiotherapy (생체 내 흡수선량 측정을 위한, 얇은 테프론의 TLD 반응감도에 대한 효과성)

  • Kim, Sookil;Yum, Ha-Young;Jeong, Tae-Sig;Moon, Chang-Woo
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.74-80
    • /
    • 2003
  • The purpose of this study was to evaluate the performance of the teflon encapsulated TLD rod, which may be used in nuclear medicine for the direct in vivo measurements of radiation dose. We analyzed the influence of teflon encapsulation for measuring absorbed dose. An experiment was carried out to evaluate and observe the response of a LiF TLD-100 rod in a thin-wall teflon capsule at different depths in a solid phantom. An adult anthropomorphic phantom was used to measure the absorbed dose using thin teflon encapsulated TLD. The measurements of PDD-, and TMR in solid phantom and athe bsorbed dose in humanoid phantom performed with normal TLD were compared with values obtained by teflon encapsulated TLD. It was demonstrated that the difference of TL response of LiF in phantom with and without teflon thin-wall capsule was less than 3% under the same conditions beyond the build-up region. However, significant differences were observed near the phantom surface because of the build-up effect caused by the thin-wall thickness of the teflon capsule. Thus, our study showed that the contribution of teflon thin-wall capsule to TLD response for the megavoltage photon beams was negligible and that it did not significantly effect dose measurement. The teflon encapsulated TLD described in this work has been proven to be appropriate for in vivo dosimetry in therapeutic environments.

  • PDF

Change of PET Image According to CT Exposure Conditions (CT 촬영 조건에 따른 PET 영상의 변화)

  • Park, Jae-Yoon;Kim, Jung-hoon;Lee, Yong-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.473-479
    • /
    • 2019
  • PET-CT improves performance and reduces the time by combining PET and CT of spatial resolution, and uses CT scan for attenuation correction. This study analyzed PET image evaluation. The condition of the tube voltage and current of CT will be changed using. Uniformity phantom and resolution phantom were injected with 37 MBq $^{18}F$ (fluorine ; 511 keV, half life - 109.7 min), respectively. PET-CT (Biograph, siemens, US) was used to perform emission scan (30 min) and penetration scan. And then the collected image data were reconstructed in OSEM-3D. The same ROI was set on the image data with a analyzer (Vinci 2.54, Germany) and profile was used to analyze and compare spatial resolution and image quality through FWHM and SI. Analyzing profile with pre-defined ROI in each phantom, PET image was not influenced by the change of tube voltage or exposure dose. However, CT image was influenced by tube voltage, but not by exposure dose. When tube voltage was fixed and exposure dose changed, exposure dose changed too, increasing dose value. When exposure dose was fixed at 150 mA and tube voltage was varied, the result was 10.56, 24.6 and 35.61 mGy in each variables (in resolution phantom). In this study, attenuation image showed no significant difference when exposure dose was changed. However, when exposure dose increased, the amount of dose that patient absorbed increased too, which indicates that CT exposure dose should be decreased to minimum to lower the exposure dose that patient absorbs. Therefore future study needs to discuss the conditions that could minimize exposure dose that gets absorbed by patient during PET-CT scan.

Evaluation of Image for Phantom according to Normalization, Well Counter Correction in PET-CT (PET-CT Normalization, Well Counter Correction에 따른 팬텀을 이용한 영상 평가)

  • Choong-Woon Lee;Yeon-Wook You;Jong-Woon Mun;Yun-Cheol Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2023
  • Purpose PET-CT imaging require an appropriate quality assurance system to achieve high efficiency and reliability. Quality control is essential for improving the quality of care and patient safety. Currently, there are performance evaluation methods of UN2-1994 and UN2-2001 proposed by NEMA and IEC for PET-CT image evaluation. In this study, we compare phantom images with the same experiments before and after PET-CT 3D normalization and well counter correction and evaluate the usefulness of quality control. Materials and methods Discovery 690 (General Electric Healthcare, USA) PET-CT equiptment was used to perform 3D normalization and well counter correction as recommended by GE Healthcare. Based on the recovery coefficients for the six spheres of the NEMA IEC Body Phantom recommended by the EARL. 20kBq/㎖ of 18F was injected into the sphere of the phantom and 2kBq/㎖ of 18F was injected into the body of phantom. PET-CT scan was performed with a radioacitivity ratio of 10:1. Images were reconstructed by appliying TOF+PSF+TOF, OSEM+PSF, OSEM and Gaussian filter 4.0, 4.5, 5.0, 5.5, 6.0, 6,5 mm with matrix size 128×128, slice thickness 3.75 mm, iteration 2, subset 16 conditions. The PET image was attenuation corrected using the CT images and analyzed using software program AW 4.7 (General Electric Healthcare, USA). The ROI was set to fit 6 spheres in the CT image, RC (Recovery Coefficient) was measured after fusion of PET and CT. Statistical analysis was performed wilcoxon signed rank test using R. Results Overall, after the quality control items were performed, the recovery coefficient of the phantom image increased and measured. Recovery coefficient according to the image reconstruction increased in the order TOF+PSF, TOF, OSEM+PSF, before and after quality control, RCmax increased by OSEM 0.13, OSEM+PSF 0.16, TOF 0.16, TOF+PSF 0.15 and RCmean increased by OSEM 0.09, OSEM+PSF 0.09, TOF 0.106, TOF+PSF 0.10. Both groups showed a statistically significant difference in Wilcoxon signed rank test results (P value<0.001). Conclusion PET-CT system require quality assurance to achieve high efficiency and reliability. Standardized intervals and procedures should be followed for quality control. We hope that this study will be a good opportunity to think about the importance of quality control in PET-CT

  • PDF

Performance Evaluation of YOLOv5 Model according to Various Hyper-parameters in Nuclear Medicine Phantom Images (핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가)

  • Min-Gwan Lee;Chanrok Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • The one of the famous deep learning models for object detection task is you only look once version 5 (YOLOv5) framework based on the one stage architecture. In addition, YOLOv5 model indicated high performance for accurate lesion detection using the bottleneck CSP layer and skip connection function. The purpose of this study was to evaluate the performance of YOLOv5 framework according to various hyperparameters in position emission tomogrpahy (PET) phantom images. The dataset was obtained from QIN PET segmentation challenge in 500 slices. We set the bounding box to generate ground truth dataset using labelImg software. The hyperparameters for network train were applied by changing optimization function (SDG, Adam, and AdamW), activation function (SiLU, LeakyRelu, Mish, and Hardwish), and YOLOv5 model size (nano, small, large, and xlarge). The intersection over union (IOU) method was used for performance evaluation. As a results, the condition of outstanding performance is to apply AdamW, Hardwish, and nano size for optimization function, activation function and model version, respectively. In conclusion, we confirmed the usefulness of YOLOv5 network for object detection performance in nuclear medicine images.

Improved Attenuation Estimation of Ultrasonic Signals Using Frequency Compounding Method

  • Kim, Hyungsuk;Shim, Jaeyoon;Heo, Seo Weon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.430-437
    • /
    • 2018
  • Ultrasonic attenuation is an important parameter in Quantitative Ultrasound and many algorithms have been proposed to improve estimation accuracy and repeatability for multiple independent estimates. In this work, we propose an improved algorithm for estimating ultrasonic attenuation utilizing the optimal frequency compounding technique based on stochastic noise model. We formulate mathematical compounding equations in the AWGN channel model and solve optimization problems to maximize the signal-to-noise ratio for multiple frequency components. Individual estimates are calculated by the reference phantom method which provides very stable results in uniformly attenuating regions. We also propose the guideline to select frequency ranges of reflected RF signals. Simulation results using numerical phantoms show that the proposed optimal frequency compounding method provides improved accuracy while minimizing estimation bias. The estimation variance is reduced by only 16% for the un-compounding case, whereas it is reduced by 68% for the uniformly compounding case. The frequency range corresponding to the half-power for reflected signals also provides robust and efficient estimation performance.

Utilizing Optical Phantoms for Biomedical-optics Technology: Recent Advances and Challenges

  • Ik Hwan Kwon;Hoon-Sup Kim;Do Yeon Kim;Hyun-Ji Lee;Sang-Won Lee
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.327-344
    • /
    • 2024
  • Optical phantoms are essential in optical imaging and measurement instruments for performance evaluation, calibration, and quality control. They enable precise measurement of image resolution, accuracy, sensitivity, and contrast, which are crucial for both research and clinical diagnostics. This paper reviews the recent advancements and challenges in phantoms for optical coherence tomography, photoacoustic imaging, digital holographic microscopy, optical diffraction tomography, and oximetry tools. We explore the fundamental principles of each technology, the key factors in phantom development, and the evaluation criteria. Additionally, we discuss the application of phantoms used for enhancing optical-image quality. This investigation includes the development of realistic biological and clinical tissue-mimicking phantoms, emphasizing their role in improving the accuracy and reliability of optical imaging and measurement instruments in biomedical and clinical research.

Evaluation of Physical Characteristics of Discovery ST scanner Using NEMA NU2-2001 Standard (NEMA NU2-2001을 이용한 PET-CT 스캐너의 물리적 특성평가)

  • Lee, Byeong-Il
    • Journal of Integrative Natural Science
    • /
    • v.1 no.2
    • /
    • pp.79-83
    • /
    • 2008
  • As a new standard for performance measurement, NEMA NU2-2001 was presented recently. In this study, I investigated the spatial resolution, sensitivity, scatter fraction, and noise equivalent count ratio (NECR) in order to know the information of physical characteristics and system performance of GE discovery ST using this new standard. Bismuth germinate crystals ($6{\times}6$ array, $6.3mm{\times}6.3mm{\times}30mm$) were used in discovery ST (energy window:375-650 keV, coincidence window:11.7 nsec). To measure the sensitivity, five aluminum sleeves (Data Spectrum Corp., Chapel Hill, NC., USA, thickness:1.25 mm)-NEMA sensitivity phantom- filled with F-18 solution were used. Successive measurements in 2D and 3D acquisition mode were made with a line source at the center of transaxial field of view and 10 cm off from the center until the count was over 500,000. Spatial resolution was estimated using a point source (F-18, 0.1 mCi) at different locations in the FOV. Scatter fraction and NECR was tested using a NEMA scatter phantom. Dynamic data were acquired for 7 half-lives using F-18 solution. And true to background ratio was averaged at last three frames when the random rate was as small as ignorable for the calculation of scatter fraction. We anticipate this overall evaluated results could be used for the quality assurance and optimized image acquisition for clinical research.

  • PDF

Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system

  • Kim, Kyuseok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2341-2347
    • /
    • 2021
  • Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the image quality, the noise properties and visual quality metric evaluation parameters were calculated. The results demonstrate that our proposed method delivers a more valid SR improvement by using dense block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the image quality of the resulting SR image, and our proposed technique was shown to be effective for nuclear medicine imaging.