DOI QR코드

DOI QR Code

Comparison of Topographic Surveying Results using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle (Drone)

고정익 무인항공기(드론)와 보급형 회전익 무인항공기를 이용한 지형측량 결과의 비교

  • 이성재 (부경대학교 환경해양대학 에너지자원공학과) ;
  • 최요순 (부경대학교 환경해양대학 에너지자원공학과)
  • Received : 2016.01.04
  • Accepted : 2016.01.25
  • Published : 2016.02.29

Abstract

Recently, many studies have been conducted to use fixed-wing and rotary-wing unmanned aerial vehicles (UAVs, Drones) for topographic surveying in open-pit mines. Because the fixed-wing and rotary-wing UAVs have different characteristics such as flight height, speed, time and performance of mounted cameras, their results of topographic surveying at a same site need to be compared. This study selected a construction site in Yangsan-si, Gyeongsangnam-do, Korea as a study area and compared the topographic surveying results from a fixed-wing UAV (SenseFly eBee) and a popular rotary-wing UAV (DJI Phantom2 Vision+). As results of data processing for aerial photos taken from eBee and Phantom2 Vision+, orthomosaic images and digital surface models with about 4 cm grid spacing could be generated. Comparisons of the X, Y, Z-coordinates of 7 ground control points measured by differential global positioning system and those determined by eBee and Phantom2 Vision+ revealed that the root mean squared errors of X, Y, Z-coordinates were around 10 cm, respectively.

최근 노천광산 현장의 지형측량을 위해 고정익 무인항공기와 회전익 무인항공기를 이용한 항공사진측량 기법들이 활발하게 연구되고 있다. 고정익 무인항공기와 회전익 무인항공기는 비행고도, 비행속도, 비행시간, 탑재된 광학 카메라의 성능 등에서 다양한 차이가 있으므로 동일한 현장을 대상으로 지형측량을 수행한 후 그 결과를 비교해 볼 필요가 있다. 본 연구에서는 경상남도 양산시에 위치한 토목건설 현장을 연구지역으로 선정하고, 고정익 무인항공기인 eBee와 보급형 회전익 무인항공기인 Phantom2 Vision+를 이용하여 지형측량을 수행한 후 그 결과를 비교하였다. eBee와 Phantom2 Vision+에서 촬영된 항공사진을 각각 자료처리한 결과 약 4 cm/pixel 공간해상도의 정사영상과 수치표면모델들을 제작할 수 있었다. 7곳의 지상기준점들에 대한 고정밀 위성측정시스템 좌표 측정결과와 비교할 때 eBee와 Phantom2 Vision+의 지형측량 결과 모두 평균 제곱근 오차가 X, Y, Z 방향에서 10 cm 내외로 나타났다.

Keywords

References

  1. Cho, S.J., Bang, E.S. and Kang, I.M., 2015, Construction of Digital Terrain Model for Nonmetal Open-pit Mine by Using Unmanned Aerial Photograph, Economic and Environmental Geology, Vol. 48, No. 3, 205-212. https://doi.org/10.9719/EEG.2015.48.3.205
  2. Cryderman, C., Bill Mah, S. and Shuflertoski, A., 2014, Evaluation of UAV Photogrammetric accuracy for mapping and earthworks computations, Geomatica, Vol. 68, No. 4, 309-317. https://doi.org/10.5623/cig2014-405
  3. IRS Global, 2014, Expanding Unmanned aricraft (Drone) Technology, IRS Global, Vol. 2, 66-89.
  4. Jung, S.H., Lim, H.M. and Lee, J.K., 2009, Analysis of the accuracy of the UAV photogrammetric method using digital camera, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 27, No. 6, 741-747.
  5. Lee, I.S., Lee, J.O., Kim, S.J. and Hong, S.H., 2013, Orhtophoto accuracy assessment of ultra-light fixed wing UAV photogrammetry techniques, Journal of the Korean Society of Civil Engineers, Vol. 33, No. 6, 2593-2600. https://doi.org/10.12652/Ksce.2013.33.6.2593
  6. Lee, S. and Choi, Y., 2015a, Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone), TUNNEL & UNDERGROUND SPACE, Vol. 25, No. 5, 462-469. https://doi.org/10.7474/TUS.2015.25.5.462
  7. Lee, S. and Choi, Y., 2015b, On-site Demonstration of Topographic Surveying Techniques at Open-pit Mines using a Fixed-wing Unmanned Aerial Vehicle(Drone), TUNNEL & UNDERGROUND SPACE, Vol. 25, No. 6, 527-533. https://doi.org/10.7474/TUS.2015.25.6.527
  8. Rhee, S., Kim, T., Kim, J., Kim, M.C. and Chang, H.J., 2015, DSM Generation and Accuracy Analysis from UAV Images on River-side Facilities, Korean Journal of Remote Sensing, Vol. 31, No. 2, 183-191. https://doi.org/10.7780/kjrs.2015.31.2.12
  9. Siebert, S. and Teizer, J., 2014, Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system, Automation in Construction, Vol. 41, 1-14. https://doi.org/10.1016/j.autcon.2014.01.004
  10. Turner, D., Lucieer, A. and Watson, C., 2012, An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery based on structure from motion (SfM) point clouds, Remote Sensing, Vol. 4, 1392-1410. https://doi.org/10.3390/rs4051392
  11. Wang, Q., Wu, L., Chen, S., Shu, D., Xu, Z., Li, F. and Wang, R., 2014, Accuracy Evaluation of 3D Geometry from Low-Attitude UAV Images:A Case Study at Zijin Mine, Proc. of 4th International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS, Suzhou, China, May 14-16, 297-300.

Cited by

  1. Application of Drone Photogrammetry for Current State Analysis of Damage in Forest Damage Areas vol.24, pp.3, 2016, https://doi.org/10.7319/kogsis.2016.24.3.049
  2. Estimation of Reservoir Area and Capacity Curve Equation using UAV Photogrammetry vol.24, pp.3, 2016, https://doi.org/10.7319/kogsis.2016.24.3.093
  3. Change Monitoring in Ecological Restoration Area of Open-Pit Mine Using Drone Photogrammetry vol.24, pp.4, 2016, https://doi.org/10.7319/kogsis.2016.24.4.097
  4. A New GIS-Based Algorithm to Support Initial Transmitter Layout Design in Open-Pit Mines vol.11, pp.11, 2018, https://doi.org/10.3390/en11113063
  5. Comparison of Communication Viewsheds Derived from High-Resolution Digital Surface Models Using Line-of-Sight, 2D Fresnel Zone, and 3D Fresnel Zone Analysis vol.7, pp.8, 2018, https://doi.org/10.3390/ijgi7080322