해양에서 배열센서를 사용하여 신호를 수신하는 경우 성능을 측정하는 척도로서 배열이득(Array Gain, AG)을 사용한다. 배열이득은 배열의 형상, 주파수 및 해양환경에 의한 소음의 방향성에 영향을 받는다. 본 논문에서는 배열이득을 모델링하고 예측하기 위하여 공간상관성을 이용하였으며, 해상실험을 통해서 예측모델을 검증하였다. 예측 모델에서는 임의형상의 배열 및 소음의 방향성을 고려할 수 있는 신호와 소음의 공간상관성을 사용하여 배열이득을 계산하였다. 해상실험에서는 예인음원을 이용하여 CW(Continuous Wave)를 수평배열센서로 수신하였으며, 송신신호 사이에 주변 소음을 측정하였고, 이로부터 개별센서와 배열센서의 SNR(Signal to Noise Ratio)을 계산하여 배열이득을 추정하였다. 최종적으로 실험적으로 측정한 배열이득과 예측모델을 이용한 배열이득을 비교 검증하였다.
최근 네트워크의 광대역화에 따른 대표적인 새로운 서비스로 IPTV 서비스를 들 수 있다. 서비스 품질을 보장하지 못하는 인터넷을 통한 IPTV 서비스가 성공적으로 정착하여 활성화되기 위해서는 철저한 서비스 품질 관리가 필수적이다. 특히 향후에는 서비스 이용자 스스로 서비스 품질을 직접 측정할 수 있도록 하는 것이 바람직함에도 불구하고 아직까지 이를 위한 적절한 방안이 없는 상태이다. 따라서 본 논문에서는 서비스 이용자 측에 있는 셋톱박스에 설치하여 실시간으로 IPTV 서비스의 품질을 측정하기 위한 소프트웨어를 소개한다. 개발된 소프트웨어의 성능을 검증하기 위하여 기존의 대표적인 두 개의 상용 계측기와 측정 결과를 비교 분석하였고 그 결과 개발된 소프트웨어를 통한 측정 결과가 상당히 정확하고 신뢰할만하다는 것을 확인할 수 있다.
이동 애드 혹 망(MANET)은 유선 인프라스트럭처의 도움 없이 이동 노드들 간에 서로 협력하여 무선 다중-홉으로 통신을 할 수 있도록 해주는 네트워크이다. 따라서 MANET에서는 서로의 전파 범위에 있지 않은 노드들 간에 통신할 수 있도록 해주는 경로 설정 방법이 필수적이며, MANET의 특성을 고려한 반응형(reactive) 라우팅 프로토콜 중의 하나로 AODV(Ad-hoc On-demand Distance Vector)가 제안되었다. 이 방식은 경로 설정을 위한 메트릭으로 홉 수를 사용하며, 결과적으로 거리가 먼 인접 노드를 경로 상의 다음 노드로 선택하게 되어 상대적으로 낮은 전송 속도를 갖는 경로가 설정되어 망 전체 처리율이 저하되는 문제가 발생한다. 본 논문에서는 다중 전송속도를 갖는 MAC 기반의 효율적인 반응형 경로 설정 기법을 제안한다. 모의실험을 통하여 제안된 기법의 성능을 분석하였으며, 실험 결과로부터 제안 기법이 기존 방법에 비해서 우수한 성능을 제공하는 것을 알 수 있었다.
본 논문에서는 영상 등록을 위한 유사도 계산에 사용되는 원형 템플릿의 설계 방법을 제안한다. 원형 템플릿은 영상의 이동 및 회전 변환에 불변한 성질을 가지고 있어 기준 영상 및 관측 영상 사이에 이동 및 회전 변환이 존재하더라도 영상 등록 제어점을 정확하게 정합하는 장점이 있다. 기준 영상의 제어점을 중심으로 일정한 거리 이내에 다수의 원주를 구성하고 각 원주 위에 일정한 간격으로 위치하는 화소들로 이루어지는 원형 템플릿을 생성하고 이를 이차원 이산 극좌표 행렬(Discrete Polar Coordinate Matrix, DPCM)으로 구성한다. 관측 영상에서도 동일한 형태의 원형 템플릿을 생성하고 탐색 범위 내의 각 위치에서 관측 영상의 원형 템플릿을 0도에서 360도 범위 내에서 일정 각도 간격으로 회전시키면서 극좌표 행렬을 생성하고 기준 영상의 극좌표 행렬과의 유사도를 Mutual Information을 이용해서 계산한다. 탐색 범위 내의 각 위치와 회전 각도에 대한 Mutual Information이 최대가 되는 화소를 정합쌍으로 결정한다. 제안한 알고리즘은 서로 다른 두 시기에 촬영한 KOMPSAT-2 영상에 적용하여 영상의 회전 변화 조건하에서 우수한 정합 성능을 보임을 확인하였다.
Purpose: The development of information technology makes it easy to utilize high-dimensional categorical data. In this regard, the purpose of this study is to propose a novel method to select the proper categorical variables in high-dimensional categorical data. Methods: The proposed feature selection method consists of three steps: (1) The first step defines the goodness-to-pick measure. In this paper, a categorical variable is relevant if it has relationships among other variables. According to the above definition of relevant variables, the goodness-to-pick measure calculates the normalized conditional entropy with other variables. (2) The second step finds the relevant feature subset from the original variables set. This step decides whether a variable is relevant or not. (3) The third step eliminates redundancy variables from the relevant feature subset. Results: Our experimental results showed that the proposed feature selection method generally yielded better classification performance than without feature selection in high-dimensional categorical data, especially as the number of irrelevant categorical variables increase. Besides, as the number of irrelevant categorical variables that have imbalanced categorical values is increasing, the difference in accuracy between the proposed method and the existing methods being compared increases. Conclusion: According to experimental results, we confirmed that the proposed method makes it possible to consistently produce high classification accuracy rates in high-dimensional categorical data. Therefore, the proposed method is promising to be used effectively in high-dimensional situation.
하드웨어-소프트웨어 통합설계에서 다양한 설계제약 조건을 만족하는 임베디드 시스템 개발을 효율적으로 완료하기 위하여 하드웨어와 소프트웨어의 최적분할을 빠른 시간 안에 탐색하는 핵심기술이 필요하다. 본 논문에서는 다양한 하드웨어-소프트웨어 분할에 따른 매핑 조합 중 최적분할에 해당할 수 없는 조합들은 미리 선별하여 탐색대상에서 제외하는 것을 가능하게 하는 맞춤형 매핑 휴리스틱, CHARMS을 제시한다. CHARMS은 응용프로그램의 여러 태스크를 하드웨어 또는 소프트웨어로 매핑하면서, 단위시간 안에 처리되는 태스크의 수인 Parallelism과 일의 양인 Workload 로 Throughput을 예측하고 최적의 분할대상을 선별하는 기존의 휴리스틱보다 향상된 방법으로, 태스크들의 계산 복잡도를 고려하였으며, 설계제약 조건의 중요도를 다양하게 표현할 수 있는 weighted combo-metric을 활용한다. H.263 인코더 설계에서 CHARMS을 이용할 경우 매핑조합의 95.17%를 탐색 대상에서 제외할 수 있었음을 실험을 통하여 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권5호
/
pp.2338-2356
/
2019
Vehicular ad-hoc network (VANET) is the name of technology, which uses 'mobile internet' to facilitate communication between vehicles. The aim is to ensure road safety and achieve secure communication. Therefore, the reliability of this type of networks is a serious concern. The reliability of VANET is dependent upon proper communication between vehicles within a given amount of time. Therefore a new formula is introduced, the terms of the new formula correspond 1 by 1 to a class special ST route (SRORT). The new formula terms are much lesser than the Inclusion-Exclusion principle. An algorithm for the Source-to-Terminal reliability was presented, the algorithm produced Source-to-Terminal reliability or computed a Source-to-Terminal reliability expression by calculating a class of special networks of the given network. Since the architecture of this class of networks which need to be computed was comparatively trivial, the performance of the new algorithm was superior to the Inclusion-Exclusion principle. Also, we introduce a mobility metric called universal speed factor (USF) which is the extension of the existing speed factor, that suppose same speed of all vehicles at every time. The USF describes an exact relation between the relative speed of consecutive vehicles and the headway distance. The connectivity of vehicles in different mobile situations is analyzed using USF i.e., slow mobility connectivity, static connectivity, and high mobility connectivity. It is observed that $p_c$ probability of connectivity is directly proportional to the mean speed ${\mu}_{\nu}$ till specified threshold ${\mu}_{\tau}$, and decreases after ${\mu}_{\tau}$. Finally, the congested network is connected strongly as compared to the sparse network as shown in the simulation results.
International Journal of Computer Science & Network Security
/
제21권8호
/
pp.267-275
/
2021
Smart application is developed in this paper by using an android-based platform to automatically determine the human emergency state (Lifesaver) by using different technology sensors of the mobile. In practice, this Lifesaver has many applications, and it can be easily combined with other applications as well to determine the emergency of humans. For example, if an old human falls due to some medical reasons, then this application is automatically determining the human state and then calls a person from this emergency contact list. Moreover, if the car accidentally crashes due to an accident, then the Lifesaver application is also helping to call a person who is on the emergency contact list to save human life. Therefore, the main objective of this project is to develop an application that can save human life. As a result, the proposed Lifesaver application is utilized to assist the person to get immediate attention in case of absence of help in four different situations. To develop the Lifesaver system, the GPS is also integrated to get the exact location of a human in case of emergency. Moreover, the emergency list of friends and authorities is also maintained to develop this application. To test and evaluate the Lifesaver system, the 50 different human data are collected with different age groups in the range of (40-70) and the performance of the Lifesaver application is also evaluated and compared with other state-of-the-art applications. On average, the Lifesaver system is achieved 95.5% detection accuracy and the value of 91.5 based on emergency index metric, which is outperformed compared to other applications in this domain.
임의의 그래프 신호를 복원하기 위해 그래프상의 일부 노드로 구성된 샘플링 집합내의 노드들의 신호값만을 사용하게 되는 경우, 이를 위한 최적의 샘플링 집합 선택 문제에 대해 연구한다. 고도의 계산량을 요구하는 고유값 분해 (eigen decomposition)를 사용하지 않고, 노드를 선택하는 과정에서의 신호 변화값의 차이를 비용함수로 제시한다. 구체적으로, 기존 방식의 비용함수인 신호 복원오차를 최소화하는 대신에 본 연구에서는 신호 변화값의 차이를 비용함수로 채택하여 이를 최소화하는 간단하고 고속의 탐욕 (greedy) 샘플링 집합선택 알고리즘을 제안한다. 기존의 고속알고리즘과 성능평가 비교를 위해 다양한 그래프 신호에 대한 폭넓은 실험을 진행하여, 기존 방식 대비 신호복원 성능감소를 약 7% 이내로 유지하면서 실행시간을 10배이상으로 단축하였음을 보인다.
Abhishek Subedi;Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Mohammad R. Jahanshahi
Smart Structures and Systems
/
제31권4호
/
pp.335-349
/
2023
Bridges constantly undergo deterioration and damage, the most common ones being concrete damage and exposed rebar. Periodic inspection of bridges to identify damages can aid in their quick remediation. Likewise, identifying components can provide context for damage assessment and help gauge a bridge's state of interaction with its surroundings. Current inspection techniques rely on manual site visits, which can be time-consuming and costly. More recently, robotic inspection assisted by autonomous data analytics based on Computer Vision (CV) and Artificial Intelligence (AI) has been viewed as a suitable alternative to manual inspection because of its efficiency and accuracy. To aid research in this avenue, this study performs a comparative assessment of different architectures, loss functions, and ensembling strategies for the autonomous segmentation of bridge components and damages. The experiments lead to several interesting discoveries. Nested Reg-UNet architecture is found to outperform five other state-of-the-art architectures in both damage and component segmentation tasks. The architecture is built by combining a Nested UNet style dense configuration with a pretrained RegNet encoder. In terms of the mean Intersection over Union (mIoU) metric, the Nested Reg-UNet architecture provides an improvement of 2.86% on the damage segmentation task and 1.66% on the component segmentation task compared to the state-of-the-art UNet architecture. Furthermore, it is demonstrated that incorporating the Lovasz-Softmax loss function to counter class imbalance can boost performance by 3.44% in the component segmentation task over the most employed alternative, weighted Cross Entropy (wCE). Finally, weighted softmax ensembling is found to be quite effective when used synchronously with the Nested Reg-UNet architecture by providing mIoU improvement of 0.74% in the component segmentation task and 1.14% in the damage segmentation task over a single-architecture baseline. Overall, the best mIoU of 92.50% for the component segmentation task and 84.19% for the damage segmentation task validate the feasibility of these techniques for autonomous bridge component and damage segmentation using RGB images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.