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ABSTRACT

We address the sampling set selection problem for arbitrary graph signals such that the original graph signal is
reconstructed from the signal values on the nodes in the sampling set. We introduce a variation difference as a new
indirect metric that measures the error of signal variations caused by sampling process without resorting to the
eigen—decomposition which requires a huge computational cost. Instead of directly minimizing the reconstruction error,
we propose a simple and fast greedy selection algorithm that minimizes the variation differences at each iteration and
justify the proposed reasoning by showing that the principle used in the proposed process is similar to that in the
previous novel technique. We run experiments to show that the proposed method yields a competitive reconstruction
performance with a substantially reduced complexity for various graphs as compared with the previous selection
methods.
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| . Introduction

Recently, a high volume of data samples are
encountered in network applications such as neural,
social and sensor

transportation, energy and

networks. In contrast to traditional data, these
reside on irregularly structured networks. Graphs
enable us to represent such high-dimensional data
by using the vertices of graphs and the edges with
weights. Specifically, graph signals are defined on
the vertices or nodes of graphs to represent data
samples on nodes and signal smoothness is
described from the weight of edges. For instance,
since two nodes close to each other are likely to
generate similar data samples, the edge connecting
them may take a weight inversely proportional to
the physical distance [1, 2]. To measure signal
variations caused by irregular structure of graphs,
variation operators such as the combinatorial graph
Laplacian, and the normalized Laplacian can be
introduced [2, 4].

Graph signal processing handles such network
data to achieve certain objectives. Since the data is
generally high-dimensional, the techniques to reduce
the size of data samples have been developed in
recent years [3-10]. The goal of the techniques is
to select a subset of vertices of the graph such
that the original signal can be recovered from data
on the sampling set. To avoild a huge
computational cost in finding the best sampling set,
greedy selection methods have been developed in
[3-5] to

reconstruction  error.

minimize the worst case of the
To find the second-order
statistics of graph signals, a greedy sampling
method was presented in [6]. A near-optimality of
greedy algorithm was shown by using the concept
of approximate submodularity [7]. Nothing that data
samples can be easily inferred from the nodes
densely connected, a non-uniform sampling based
on the local uncertainty principle which selects

more samples in area of high concentration was

1024

devised [8].
selection methods require the eigen-decomposition

Since most of the sampling set
of matrices, algorithms without requiring such
decomposition was presented to achieve a fast
execution time and reasonable performance [9, 10].

In this work, we consider the sampling set
without the
facilitate  fast

selection eigen—decomposition  to

selection process in  practical
applications. We focus on the signal variation and
aim to take a greedy selection of nodes of the
that the

minimized at each iteration. In contrast to most of

graph such variation difference is
the previous methods which run on the eigenvector
matrix of variation operators, we directly employ
the wvariation operator to devise a fast and
low-weight algorithm. We also discuss that the
proposed method works based on the principle
similar to that of the non-uniform sampling
presented in [8]. We examine the performance of

the proposed algorithm by experiments and show

that our algorithm produces a competitive
reconstruction performance with a fast execution
time at the cost of a substantially reduced

complexity as compared with previous sampling
selection methods.

The main contributions of this work are: (a) we
propose a fast sampling set selection that directly
works on variation operators to avoid a heavy
computation of the eigen-decomposition of the
operators, leading to a low-weight selection process
and (b) we do not restrict to bandlimited graph

signals which have been assumed for many
previous methods to simplify their derivation
processes. Thereby, our proposed algorithm is

expected to perform well for arbitrary graph
signals.

This paper is organized as follows. The problem
1s formulated in Section II. The proposed algorithm
is explained and summarized in Section IIL
Comparison with the previous work [8] is provided

to justify the principle applied to the proposed
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algorithm in Section IV. The performance of the
proposed algorithm is demonstrated by experiments
for various graphs in Section V and the conclusion
given in Section VI.

II. Problem Formulation

We consider a graph (V,E) with N vertices
denoted by a set of nodes V={I,---N} and edges
E={(i,j,w;)} where w; is a weight of the edge
associated with node i and j. A set of N data
samples on V is regarded as a graph signal f €
RY with signal value f; indicating the sample on the
i-th vertex. From the connectivity of nodes of
(eg.,
graph Laplacian, normalized Laplacian)

graphs, variation operators combinatorial
can be
produced to evaluate the variation of signals over
nodes of graphs [2, 4]. Assuming that the variation
L, NXN matrix,
eigenvectors uy,..,un with corresponding eigenvalues
PYERETW

by

operator has  orthonormal

, the graph signal f can be written

~ ‘\' ~
F=UF=X 1\ )y (1)

i=1
where U=[u, - u,] is the eigenvector matrix and
f=U'f=U'f the graph Fourier transform (GFT)
of f with entries f(\,).

Now, we sample the graph signal f to obtain the
sampled signal fs with signal values indexed by a
sampling set S. Let S be an NXx|S
of which
nodes in the set S. Then, the sampled signal can

matrix

consisting of columns, each indicates

be expressed from (1) as follows:
fo=8"f=8"UF= Uyf @)
where Usy 1s a submatrix of the eigenvector

matrix U with rows indexed by S and columns by
V, respectively. Assuming that Usy has a rank |SI,

the least square estimate (LSE) of ? is given by
f = Ugvf s Wwhere SV USTV( USVU§V)71 is

pseudoinverse of Usy. Thus, the graph signal can

the

be recovered from the sampled one by using the
LSE and the reconstructed signal f can be given
by:

F=Uf = UU(Us Usy) " 'F s &)

Note that most of the previous work focused on
finding the optimal sampling set by minimizing the

reconstruction error  Ell f—f | * [35. In this
work, we seek to minimize a simple and indirect
metric in selection process which is introduced in
the following section.

[ll. Fast sampling set selection

Let ? ¢ be the sampled signal defined as

7 {fi =S (@)

Fs=0 ieso=1—5

Then, we have ?S:Isf where Is is a diagonal
matrix with entries d; =1,71€S and d; =0,i€5°
Note that f'If represents the variation of signal f
over nodes of a graph G. In this work, we aim to
find the best sampling set S that minimizes the
variation difference due to the sampling process:
more specifically, for arbitrary graph signal f,

§'=aremin|f'Lf~ F(LF
=argmin|f'Lf— f'LLLS|
= argm;n |fT<L— Iél@ﬂ

= argmin (- Ly)f
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where ZSZIngs consists of the rows and

columns of L indexed by S and zero rows and zero
columns by s& specifically,

LIES

P ©)

(-Z9,= {(L(;

ij
The variation difference can be further simplified

as follows:

‘fT(L_ Zé)f|= Efyf](L_ 25)“ (10)
= fiaxZKL_ ZS)U
irj

where f,.. =max|f;| .

Thus, in this work, we focus on minimizing

E|(L— ZS)”] alternatively, the Frobenius matrix
]

2 .

norm || L—ZSH ZFE %}KL_ZS)U

* . - 2
S =argmin | Z— Ll - 11)

To minimize the Frobenius matrix norm, we take
a simple and fast strategy and summarize the
proposed fast method in what follows:
Denoting the columns and rows of L by ¢ and ri,

respectively, we initially let Ag= (L— I 5) with
ZS=0 and §=g.
Step 1: find the maximum norm of each column in
Ay

i’ =argmax|c;|? (12)

ics’

Step 2: update Ag by replacing ¢ and ri with
zero vectors, respectively, and let S=S+i'}.

Step 3: repeat Step 1 to Step 2 until S reaches the
desired cardinality.

IV. Discussion of Proposed principle

In this section, we discuss that the principle of

1026

the proposed fast method is similar to that of the
non-uniform sampling in [8]. First, the localization
operator matrix is T given by

T,=[Tig- Tg| (13)

where Tig is the translated version of the signal g
at node 1:

Tg= VNZY g0\ (i)y, (14)
Thus, we have
T, = VNUGU", G=diag(g(A,):-g(\y)) (15

The non-uniform sampling strategy select nodes
with the probability proportional to | Zig || > which is
the i-th column of T; To find the connection to the
proposed method, we can regard T, as L with the
eigenvalue matrix A= v/ N G Hence, sampling nodes
corresponding to the columns with maximum norm
would be similar to the non-uniform sampling method.

However, in contrast, our method differentiates
itself from the non-uniform sampling by replacing
the selected columns and rows with zero vectors,
which is needed since the previously selected nodes
should make an effect on sampling of next nodes.
Furthermore, the proposed method directly operates
on the variation operator L without computation of
eligenvectors

and eigenvalues of the operator,

leading to a fast and low-weight process.

V. Simulation results

In the experiments, we consider three different
graphs for test of the different selection methods:

1) Random sensor graph (RSG)

2) Random regular graph (RRG) with each
vertex connected to six vertices

3) Random Erdos—Rényi graph (RERG) with the
edge connecting probability p=0.05
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We generate 50 graph realizations with N=1000
vertices for each of three graphs, and create the
combinatorial Laplacian matrix L as a variation
operator. We construct sampling sets S with size
S| from 30 to 100 by wusing three different
techniques, denoted by efficient sampling method
(ESM) [4], the proposed method (Proposed 1) given
by (11) and the proposed fast method (Proposed 2),
respectively. In testing the selection methods, we
use random graph signals to be assumed to be
generated from the Gaussian joint distribution as
follows:

p(f) o< exp(— 7K 'f)=exp(— f/(L+6Df) (16)

where L4461 is the
matrix K and 6 is set to be a small value (=0.01)

inverse of the covariance

to ensure the existence of the inverse. We generate
noisy graph signals by using an iid additive noise
drawn from M0,6?) and evaluate the selection
methods in terms of the average reconstruction

error the

A2
by Ewin which

reconstructed signal is obtained by (3) and the

given

average taken over 100 graph signal values at each

node. In the experiments, we create graphs
including L and U with an aid of the graph signal
processing toolbox (GSPBox) for Matlab [11].

We investigate how the selection methods work
with respect to sample size from 30 to 100 for
noisy graph signals. We first provide the ratio of
the running time for ESM and Proposed 2 in Table
1. Obviousy, the proposed fast algorithm runs over
10 times faster than ESM for the graphs tested. In
Figure 1, 2 and 3, it is shown that the proposed
fast algorithm (Proposed 2) achieves a reasonable
reconstruction performance with a significantly
reduced complexity as compared with ESM. More
the

reconstruction performance about 7% worse than

specifically, Proposed 2 shows average

ESM for Random sensor graph, offering a practical

solution in real-time applications.

Table 1. The runninng time in second
provided for ESM and Proposed 2: RT(ESM)
and RT(Prop 2) represent the running time of
ESM and Proposed 2, respectively.

RSG RRG | RERG
RT(ESM)
RT(Prop2) 12.11 12.81 10.70
Performance evaluation for RSG
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Fig. 1. Performance evaluation of different sampling
methods for Random sensor graph by varying sample
size with signal noise level o =0.5.
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Fig. 2. Performance evaluation of different sampling
methods for Random regular graphs by varying
sample size with signal noise level o =0.5.
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Performance evaluation for RERG
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Fig. 3. Performance evaluation of different sampling
methods for Random Erdds-Rényi graph by varying
sample size with signal noise level o =0.5.

VI. Conclusion

We studied the problem of sampling a subset of
nodes of graphs for arbitrary graph signals. To
avold a huge computational cost due to the
eigen-decomposition of variation operators, we
suggested the variation difference as a simple and
indirect metric computed directly from the variation
operator. We presented a greedy selection that
minimizes the metric by eliminating a row and a
column with the maximum norm iteratively, which
corresponds to the selected node at iterations. We
also discussed that the proposed algorithm operates
based on the principle similar to that of the
method [6]. We
experiments to assert that the proposed algorithm

previous finally executed
offers a fast selection process with reasonable
performance for various graphs as compared with

the different sampling methods.
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