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임의의 그래프신호를 위한 고속 샘플링 집합 선택 
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요 약

임의의 그래프 신호를 복원하기 위해 그래프상의 일부 노드로 구성된 샘플링 집합내의 노드들의 신호값만

을 사용하게 되는 경우, 이를 위한 최적의 샘플링 집합 선택 문제에 대해 연구한다. 고도의 계산량을 요구하

는 고유값 분해 (eigen decomposition)를 사용하지 않고, 노드를 선택하는 과정에서의 신호 변화값의 차이를 

비용함수로 제시한다. 구체적으로, 기존 방식의 비용함수인 신호 복원오차를 최소화하는 대신에 본 연구에서

는 신호 변화값의 차이를 비용함수로 채택하여 이를 최소화하는 간단하고 고속의 탐욕 (greedy) 샘플링 집합 

선택 알고리즘을 제안한다. 기존의 고속알고리즘과 성능평가 비교를 위해 다양한 그래프 신호에 대한 폭넓은 

실험을 진행하여, 기존 방식 대비 신호복원 성능감소를 약 7% 이내로 유지하면서 실행시간을 10배이상으로 

단축하였음을 보인다.

ABSTRACT

We address the sampling set selection problem for arbitrary graph signals such that the original graph signal is 

reconstructed from the signal values on the nodes in the sampling set. We introduce a variation difference as a new 

indirect metric that measures the error of signal variations caused by sampling process without resorting to the 

eigen-decomposition which requires a huge computational cost. Instead of directly minimizing the reconstruction error, 

we propose a simple and fast greedy selection algorithm that minimizes the variation differences at each iteration and 

justify the proposed reasoning by showing that the principle used in the proposed process is similar to that in the 

previous novel technique. We run experiments to show that the proposed method yields a competitive reconstruction 

performance with a substantially reduced complexity for various graphs as compared with the previous selection 

methods.
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Ⅰ. Introduction 

Recently, a high volume of data samples are 

encountered in network applications such as neural, 

transportation, energy and social and sensor 

networks. In contrast to traditional data, these 

reside on irregularly structured networks. Graphs 

enable us to represent such high-dimensional data 

by using the vertices of graphs and the edges with 

weights. Specifically, graph signals are defined on 

the vertices or nodes of graphs to represent data 

samples on nodes and signal smoothness is 

described from the weight of edges. For instance, 

since two nodes close to each other are likely to 

generate similar data samples, the edge connecting 

them may take a weight inversely proportional to 

the physical distance [1, 2]. To measure signal 

variations caused by irregular structure of graphs, 

variation operators such as the combinatorial graph 

Laplacian, and the normalized Laplacian can be 

introduced [2, 4].

Graph signal processing handles such network 

data to achieve certain objectives. Since the data is 

generally high-dimensional, the techniques to reduce 

the size of data samples have been developed in 

recent years [3-10]. The goal of the techniques is 

to select a subset of vertices of the graph such 

that the original signal can be recovered from data 

on the sampling set. To avoid a huge 

computational cost in finding the best sampling set, 

greedy selection methods have been developed in 

[3-5] to minimize the worst case of the 

reconstruction error. To find the second-order 

statistics of graph signals, a greedy sampling 

method was presented in [6]. A near-optimality of 

greedy algorithm was shown by using the concept 

of approximate submodularity [7]. Nothing that data 

samples can be easily inferred from the nodes 

densely connected, a non-uniform sampling based 

on the local uncertainty principle which selects 

more samples in area of high concentration was 

devised [8]. Since most of the sampling set 

selection methods require the eigen-decomposition 

of matrices, algorithms without requiring such 

decomposition was presented to achieve a fast 

execution time and reasonable performance [9, 10].

In this work, we consider the sampling set 

selection without the eigen-decomposition to 

facilitate fast selection process in practical 

applications. We focus on the signal variation and 

aim to take a greedy selection of nodes of the 

graph such that the variation difference is 

minimized at each iteration. In contrast to most of 

the previous methods which run on the eigenvector 

matrix of variation operators, we directly employ 

the variation operator to devise a fast and 

low-weight algorithm. We also discuss that the 

proposed method works based on the principle 

similar to that of the non-uniform sampling 

presented in [8]. We examine the performance of 

the proposed algorithm by experiments and show 

that our algorithm produces a competitive 

reconstruction performance with a fast execution 

time at the cost of a substantially reduced 

complexity as compared with previous sampling 

selection methods. 

The main contributions of this work are: (a) we 

propose a fast sampling set selection that directly 

works on variation operators to avoid a heavy 

computation of the eigen-decomposition of the 

operators, leading to a low-weight selection process 

and (b) we do not restrict to bandlimited graph 

signals which have been assumed for many 

previous methods to simplify their derivation 

processes. Thereby, our proposed algorithm is 

expected to perform well for arbitrary graph 

signals.

This paper is organized as follows. The problem 

is formulated in Section II. The proposed algorithm 

is explained and summarized in Section III. 

Comparison with the previous work [8] is provided 

to justify the principle applied to the proposed 
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algorithm in Section IV. The performance of the 

proposed algorithm is demonstrated by experiments 

for various graphs in Section V and the conclusion 

given in Section VI.

Ⅱ. Problem Formulation

We consider a graph G(V,E) with N vertices 

denoted by a set of nodes V={1,…,N} and edges 

E={(i,j,wij)} where wij is a weight of the edge 

associated with node i and j. A set of N data 

samples on V is regarded as a graph signal f ∈ 

RN
 with signal value fi indicating the sample on the 

i-th vertex. From the connectivity of nodes of 

graphs, variation operators (e.g., combinatorial 

graph Laplacian, normalized Laplacian) can be 

produced to evaluate the variation of signals over 

nodes of graphs [2, 4]. Assuming that the variation 

operator L, ×  matrix, has orthonormal 

eigenvectors u1,...,uN with corresponding eigenvalues 

≤⋯≤  , the graph signal f can be written 

by

              



             (1)

where  ⋯   is the eigenvector matrix and 

  the graph Fourier transform (GFT) 

of f with entries  . 

Now, we sample the graph signal f to obtain the 

sampled signal fs with signal values indexed by a 

sampling set S. Let S  be an ×   matrix 

consisting of columns, each of which indicates 

nodes in the set S. Then, the sampled signal can 

be expressed from (1) as follows:

           
              (2)

where USV is a submatrix of the eigenvector 

matrix U with rows indexed by S and columns by 

V, respectively. Assuming that USV has a rank |S|, 

the least square estimate (LSE) of   is given by 

 
   where 

 
 

   is the 

pseudoinverse of USV. Thus, the graph signal can 

be recovered from the sampled one by using the 

LSE and the reconstructed signal   can be given 

by:

     
 

 
    (3)          

    

Note that most of the previous work focused on 

finding the optimal sampling set by minimizing the 

reconstruction error ∥∥  [3-5]. In this 

work, we seek to minimize a simple and indirect 

metric in selection process which is introduced in 

the following section.

Ⅲ. Fast sampling set selection

Let   be the sampled signal defined as

         ∈ ∈ ≡                (4)

Then, we have     where IS is a diagonal 

matrix with entries    ∈  and    ∈  . 
Note that fTLf represents the variation of signal f 

over nodes of a graph G. In this work, we aim to 

find the best sampling set S
*
 that minimizes the 

variation difference due to the sampling process: 

more specifically, for arbitrary graph signal f,

       

  arg

min   

 arg

min  

 arg

min  

 arg

min 
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where   
  consists of the rows and 

columns of L indexed by S and zero rows and zero 

columns by S
C
: specifically,

             ∈ ∈         (9)

The variation difference can be further simplified 

as follows:

  


≤ max 



         (10)

where max max  . 
Thus, in this work, we focus on minimizing  



  alternatively, the Frobenius matrix 

norm ∥∥ ≡




:

            arg

min∥∥           (11)

To minimize the Frobenius matrix norm, we take 

a simple and fast strategy and summarize the 

proposed fast method in what follows:

Denoting the columns and rows of L by ci and ri, 

respectively, we initially let ≡  with 

    and  ∅.

Step 1: find the maximum norm of each column in 

:

                arg
∈
max‖‖                (12)

Step 2: update   by replacing ci* and ri* with 

zero vectors, respectively, and let S=S+{i*}.

Step 3: repeat Step 1 to Step 2 until S reaches the 

desired cardinality.

Ⅳ. Discussion of Proposed principle

In this section, we discuss that the principle of 

the proposed fast method is similar to that of the 

non-uniform sampling in [8]. First, the localization 

operator matrix is Tg given by

               ⋯            (13)

where Tig is the translated version of the signal g 

at node i:

      ∑             (14)

Thus, we have

 
   (15)

The non-uniform sampling strategy select nodes 

with the probability proportional to ∥∥  which is 
the i-th column of Tg. To find the connection to the 

proposed method, we can regard Tg as L with the 

eigenvalue matrix . Hence, sampling nodes 

corresponding to the columns with maximum norm 

would be similar to the non-uniform sampling method.

However, in contrast, our method differentiates 

itself from the non-uniform sampling by replacing 

the selected columns and rows with zero vectors, 

which is needed since the previously selected nodes 

should make an effect on sampling of next nodes. 

Furthermore, the proposed method directly operates 

on the variation operator L without computation of 

eigenvectors and eigenvalues of the operator, 

leading to a fast and low-weight process. 

V. Simulation results

In the experiments, we consider three different 

graphs for test of the different selection methods: 

1) Random sensor graph (RSG)

2) Random regular graph (RRG) with each 

vertex connected to six vertices 

3) Random Erdös-Rényi graph (RERG) with the 

edge connecting probability p=0.05
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We generate 50 graph realizations with N=1000 

vertices for each of three graphs, and create the 

combinatorial Laplacian matrix L as a variation 

operator. We construct sampling sets S with size 

|S| from 30 to 100 by using three different 

techniques, denoted by efficient sampling method 

(ESM) [4], the proposed method (Proposed 1) given 

by (11) and the proposed fast method (Proposed 2), 

respectively. In testing the selection methods, we 

use random graph signals to be assumed to be 

generated from the Gaussian joint distribution as 

follows:

∝exp exp  (16)

where   is the inverse of the covariance 

matrix K and   is set to be a small value (=0.01) 

to ensure the existence of the inverse. We generate 

noisy graph signals by using an iid additive noise 

drawn from   and evaluate the selection 

methods in terms of the average reconstruction 

error given by 
∥∥

in which the 

reconstructed signal is obtained by (3) and the 

average taken over 100 graph signal values at each 

node. In the experiments, we create graphs 

including L and U with an aid of the graph signal 

processing toolbox (GSPBox) for Matlab [11].

We investigate how the selection methods work 

with respect to sample size from 30 to 100 for 

noisy graph signals. We first provide the ratio of 

the running time for ESM and Proposed 2 in Table 

1. Obviousy, the proposed fast algorithm runs over 

10 times faster than ESM for the graphs tested. In 

Figure 1, 2 and 3, it is shown that the proposed 

fast algorithm (Proposed 2) achieves a reasonable 

reconstruction performance with a significantly 

reduced complexity as compared with ESM. More 

specifically, Proposed 2 shows the average 

reconstruction performance about 7% worse than 

ESM for Random sensor graph, offering a practical 

solution in real-time applications. 

RSG RRG RERG

Pr


12.11 12.81 10.70

Table 1. The runninng time in second 
provided for ESM and Proposed 2: RT(ESM) 
and RT(Prop 2) represent the running time of 
ESM and Proposed 2, respectively.

Fig. 1. Performance evaluation of different sampling 
methods for Random sensor graph by varying sample 
size with signal noise level   .

Fig. 2. Performance evaluation of different sampling 
methods for Random regular graphs by varying 
sample size with signal noise level   .
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Fig. 3. Performance evaluation of different sampling 
methods for Random Erdös-Rényi graph by varying 
sample size with signal noise level   .

VI. Conclusion

We studied the problem of sampling a subset of 

nodes of graphs for arbitrary graph signals. To 

avoid a huge computational cost due to the 

eigen-decomposition of variation operators, we 

suggested the variation difference as a simple and 

indirect metric computed directly from the variation 

operator. We presented a greedy selection that 

minimizes the metric by eliminating a row and a 

column with the maximum norm iteratively, which 

corresponds to the selected node at iterations. We 

also discussed that the proposed algorithm operates 

based on the principle similar to that of the 

previous method [6]. We finally executed 

experiments to assert that the proposed algorithm 

offers a fast selection process with reasonable 

performance for various graphs as compared with 

the different sampling methods.
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