• Title/Summary/Keyword: perform design

Search Result 2,792, Processing Time 0.034 seconds

Optimum design of RC shallow tunnels in earthquake zones using artificial bee colony and genetic algorithms

  • Ozturk, Hasan Tahsin;Turkeli, Erdem;Durmus, Ahmet
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.435-453
    • /
    • 2016
  • The main purpose of this study is to perform optimum cost design of cut and cover RC shallow tunnels using Artificial bee colony and genetic algorithms. For this purpose, mathematical expressions of objective function, design variables and constraints for the design of cut and cover RC shallow tunnels were determined. By using these expressions, optimum cost design of the Trabzon Kalekapisi junction underpass tunnel was carried out by using the cited algorithms. The results obtained from the algorithms were compared with the results obtained from traditional design and remarkable saving from the cost of the tunnel was achieved.

Development of a Tool to Automate One-Dimensional Finite Element Analysis of Machine Tool Spindles

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.172-176
    • /
    • 2015
  • In this research, a tool was developed to automate one-dimensional finite element analysis (1D FEA) for design of a machine tool spindle. Based on object-oriented programing, this tool employs the objects of a CAD system to construct a geometric model and then to convert it into the FE model of 1D beams at the workbenches of the CAD system with minimum data to define the spindle such as bearing positions and cross-sections of the shaft. Graphic user interfaces were developed for users to interact with the tool. This tool is helpful in identifying a near optimal design of the spindle with the automation of the FEA process with numerous design changes in minimum time and efforts. It is also expected to allow even design engineers to perform the FEA in search of an optimal design of the machine tool spindle.

Human Factors Design Review of CFMS for Improving the Safety of Nuclear Power Plant (원전의 안전성 제고를 위한 CFMS의 인간공학적 설계 검토)

  • 이용희;정광태
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.201-208
    • /
    • 1997
  • In order to improve the safety of nuclear power plant, we performed a human factors review for the CFMS(Critical Function Monitoring system) design of nuclear power plant. Three works were performed in this study. In first work, we developed human factors engineering program plan(HFEPP) and human factors engineering verification and validation plan (HFE-V & V plan) to effectively perform CFMS design and review. In second work, we identified human engineering discrepancies(HEDs) for CFMS design through human factors design review and proposed those resolutions. In the third work, we developed the evaluation and management methodology for identified KEDs. Methodology developed in this study can be used in other complex system as well as in CFMS design review.

  • PDF

Robust Optimal Design of a Decoupled Vibratory Microgyroscope Considering Fabrication Influence (공정영향을 고려한 비연성 진동형 마이크로 자이로스코프의 강건 최적 설계)

  • Jeong Hee-Moon;Ha Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1065-1074
    • /
    • 2004
  • A robust optimal design considering fabrication influence has been performed for the decoupled vibratory microgyroscope fabricated by the bulk micromachining. For the analysis of the gyroscope, a design tool has been developed, by which user can perform the system level design considering electric signal process and the fabrication influence as well as mechanical characteristics. An initial design of the gyroscope is performed satisfying the performances of scale factor (or sensitivity) and phase delay, which depend on the frequency difference between driving and sensing resonant frequencies. The objective functions are formulated in order to reduce the variances of the frequency difference and the frequency in itself by fabrication error. To certify the results, the standard deviations are calculated through the Monte Caries Simulation (MCS) and compared initial deviation that is measured fabricated gyroscope chip.

Fair Assessment Method Reflecting Individual Ability in Capstone Design Course (캡스톤 디자인 수업에서 개인 능력을 반영하는 공정한 평가 방법)

  • Kim, Jongwan
    • Journal of Engineering Education Research
    • /
    • v.22 no.2
    • /
    • pp.36-45
    • /
    • 2019
  • Capstone design is a subject taught in a setting where students gather in a team, decide on their own selected topic, and collaborate with one another to perform a project. A fair assessment is very important in a team project-based capstone design course for students. Many instructors agree that harmonizing creative evaluation and outcome assessment is hard in capstone design class. In also, it is not easy to assess students' individual efforts and achievements fairly in accordance with team-based assessment practices. To resolve this issue in this paper, we have surveyed various engineering design education methodologies, and have modelled existing evaluating elements into a modified creative process and outcome assessment framework for team project assessment. In particular, we focused on a method of fairly assigning credits by combining team based and individual-level assessments. Analyzing students' achievement and grade evaluation and verifying the validity of the proposed method was performed.

Parametric Design Modeling Method for PC Production Simulation Using BIM (PC 생산 시뮬레이션 모델과 BIM 모델 간의 효율적 건물 부재 정보 교환을 위한 파라메트릭 디자인 모델링 기법)

  • Lee, WonSeok;Jeong, WoonSeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.157-158
    • /
    • 2021
  • Recently, there have been a growing number of cases using precast concrete construction methods to efficiently carry out construction projects. In order to efficiently carry out PC construction, it is necessary to establish a production plan of PC components that effectively reflect various design alternatives during the initial design stage. Because the production plan of PC components is based on productivity of PC members, the use of PC production simulations that can effectively predict productivity for design alternatives is necessary. Therefore, this paper propose a method to efficiently generate design alternatives which is necessary to perform to production simulations using parametric modeling techniques and BIM.

  • PDF

A Physical Simulation of Powder Forged Con-Rod (승용차용 커넥팅로드의 분말단조시 예비성형체설계를 위한 실험적 연구)

  • 이정환;이영선;박종진;정형식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.35-46
    • /
    • 1996
  • The powder forging process offers beneficial material utilization as well as the minimization of finishing operations over that of conventionally forged rods. In the present work, the sintering behavior of Fe-2Cu-0.6C-0.35MnS, optimum preform design and forgeability of various forging conditions were investigated. This data were generated using a newly proposed sub-scaled con-rod specimen developed specifically to simulate the powder forging process. The results of present work, powder perform is so difficult to flow material into die cavity and mass flow has no effect on improving the strength. And, applied force to increase density of the specimen flowed material is greater than that of all repessing mode. On the contrary, the specimen flowed material became increased hardness of inside in contrast with all repressing mode, but the tensile strength were decreased with residual porosity in surface. Due to material flow characteristic of powder preform, the section of lower density in powder preform became also lower density in forged con-rod. So, preform design is very important in manufacturing powder forged connecting rod.

Slotted hydrofoil design optimization to minimize cavitation in amphibious aircraft application: A numerical simulation approach

  • Conesa, Fernando Roca;Liem, Rhea Patricia
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.309-333
    • /
    • 2020
  • The proposed study aims to numerically investigate the performance of hydrofoils in the context of amphibious aircraft application. In particular, we also study the effectiveness of a slotted hydrofoil in minimizing the cavitation phenomenon, to improve the overall water take-off performance of an amphibious aircraft. We use the ICON A5 as a base model for this study. First, we propose an approach to estimate the required hydrofoil surface area and to select the most suitable airfoil shape that can minimize cavitation, thus improving the hydrodynamic efficiency. Once the hydrofoil is selected, we perform 2D numerical studies of the hydrodynamic and cavitating characteristics of a non-slotted hydrofoil on ANSYS Fluent. In this work, we also propose to use a slotted hydrofoil to be a passive method to control the cavitation performance through the boundary layer control. Numerical results of several slotted configurations demonstrate notable improvement on the cavitation performance. We then perform a multiobjective optimization with a response surface model to simultaneously minimize the cavitation and maximize the hydrodynamic efficiency of the hydrofoil. The optimization takes the slot geometry, including the slot angle and lengths, as the design variables. In addition, a global sensitivity study has been carried and it shows that the slot widths are the more dominant factors.

Comparison of Nonlinear Analysis Programs for Small-size Reinforced Concrete Buildings I (소규모 철근콘크리트 건축물을 위한 비선형해석 프로그램 비교 I)

  • Yoo, Changhwan;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.219-228
    • /
    • 2015
  • For small-size reinforce-concrete buildings, Midas Gen, OpenSees, and Perform-3D, which are structural analysis programs that are most popularly used at present, were applied for nonlinear static pushover analysis, and then difference between those programs was analyzed. Example buildings were limited to 2-story frames only and frames with one or more rectangular walls. Analysis results showed that there was not much difference for frames only based on capacity curves. There were some differences for frames with rectangular walls, but it was not so significant. The global behaviors represented by the capacity curve were not so different, but the feature of each analysis program appeared when the results were analyzed in more detail. Therefore, the program users should understand the feature of the program well, and then conduct performance assessment. The result of this study is limited to low-story frames only and frames with rectangular walls so that it should be noted that it is possible to get different results for frames with non-rectangular walls or mid- to high-rise buildings.

Predictive maintenance architecture development for nuclear infrastructure using machine learning

  • Gohel, Hardik A.;Upadhyay, Himanshu;Lagos, Leonel;Cooper, Kevin;Sanzetenea, Andrew
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1436-1442
    • /
    • 2020
  • Nuclear infrastructure systems play an important role in national security. The functions and missions of nuclear infrastructure systems are vital to government, businesses, society and citizen's lives. It is crucial to design nuclear infrastructure for scalability, reliability and robustness. To do this, we can use machine learning, which is a state of the art technology used in various fields ranging from voice recognition, Internet of Things (IoT) device management and autonomous vehicles. In this paper, we propose to design and develop a machine learning algorithm to perform predictive maintenance of nuclear infrastructure. Support vector machine and logistic regression algorithms will be used to perform the prediction. These machine learning techniques have been used to explore and compare rare events that could occur in nuclear infrastructure. As per our literature review, support vector machines provide better performance metrics. In this paper, we have performed parameter optimization for both algorithms mentioned. Existing research has been done in conditions with a great volume of data, but this paper presents a novel approach to correlate nuclear infrastructure data samples where the density of probability is very low. This paper also identifies the respective motivations and distinguishes between benefits and drawbacks of the selected machine learning algorithms.