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a b s t r a c t

Nuclear infrastructure systems play an important role in national security. The functions and missions of
nuclear infrastructure systems are vital to government, businesses, society and citizen's lives. It is crucial
to design nuclear infrastructure for scalability, reliability and robustness. To do this, we can use machine
learning, which is a state of the art technology used in various fields ranging from voice recognition,
Internet of Things (IoT) device management and autonomous vehicles. In this paper, we propose to
design and develop a machine learning algorithm to perform predictive maintenance of nuclear infra-
structure. Support vector machine and logistic regression algorithms will be used to perform the pre-
diction. These machine learning techniques have been used to explore and compare rare events that
could occur in nuclear infrastructure. As per our literature review, support vector machines provide
better performance metrics. In this paper, we have performed parameter optimization for both algo-
rithms mentioned. Existing research has been done in conditions with a great volume of data, but this
paper presents a novel approach to correlate nuclear infrastructure data samples where the density of
probability is very low. This paper also identifies the respective motivations and distinguishes between
benefits and drawbacks of the selected machine learning algorithms.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In nuclear power plants, monitoring and timely detection of
emergent faults are critical for operational safety and performance
enhancement. Furthermore, the nuclear power industry operates
under high levels of safety, capability and reliability. Nuclear power
plants incorporate critical infrastructure systems and require the
collection of real-time data to ensure efficient and secure opera-
tions. For example, in the smart grid, renewable energy sources,
distributed energy storage, and energy generation need to be effi-
ciently integrated and managed through complex and computa-
tionally intense models, real-time analysis, and visualization. A
massive amount of data will be generated from the power grid and
transmitted to the energy management system (EMS) in order to
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by Elsevier Korea LLC. This is an
enable efficient system operations [1]. To be cost effective, nuclear
power plants must be run at maximum capacity with minimal
downtime. To achieve higher availability and reliability, it is
necessary tomaintain plant equipment in optimal condition, which
increases operating costs tremendously. The solution to this prob-
lem is to perform corrective and predictive maintenance of the
nuclear power plant components. Deviation from normal operating
conditions could result from a fault in a single system component
or simultaneous faults in multiple components [2]. Often, it is
difficult for the operator to detect such issues and locate the
associated equipment in a timely manner, especially if it evolves
slowly.

Similarly, in a safe and reliable nuclear power plant system,
various sensors will be installed on system components and
deployed to collect information and transmit data to the operation
center. With a large amount and variety of equipment dynamically
running in a nuclear power plant system, huge volumes of
streaming data (big data) are generated bymonitoring variations in
plant functioning (e.g., condition of rotating machinery, speeds,
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valves, etc.) [3] For example, a real-world SHRP2 dataset is over a
petabyte in size. Thus, the mounting volume of stored and pro-
cessed data, along with the continuously increasing requirements
of storage and processing capacity, pose significant challenges
which hinder the effectiveness of monitoring a nuclear power plant
system.

To support highly secured nuclear power plant systems, a
generic predictive analytics system using big datawill be developed
to mitigate failures. Monitoring sensor data will help detect
anomalies and help plant personnel respond in a timely manner.
Analyzing data generated by various sensors of the power plant is a
trivial solution for predicting component failures to increase the
power plant efficiency. Predictive analytics involves building a big
data framework to continuously monitor asset performance
through sensor data analytics to provide advance warnings of
component failures. The amount of data fromdifferent temperature
sensors, pressure sensors, and other parts of nuclear sub-systems is
huge; hence, a big data framework coupled with machine learning
can be implemented to solve this problem. Identifying problems
before they occur helps to reduce unscheduled downtime, improve
plant maintenance and optimize asset performance.

This research paper focuses on the design and development of
an advanced predictive maintenance analytics system using ma-
chine learning algorithms. This robust system will be used to pre-
dict nuclear power plant failures to protect the environment. The
primary objectives of the current research are given below:

C Research into various potential failures of nuclear power
plants and machinery

C Analyze nuclear power plant functionalities from the nuclear
sensor data

C Collect various nuclear sensor data using intelligent drivers
and store it on a non-SQL server

C Apply and optimize machine learning algorithms to verify
results and accuracy

C Compare results of the machine learning algorithms for final
decision making

C Continue to improve the proposed framework and support
heterogeneous data collected from different sources.
2. Background and existing work

In this segment, we studied the existing work and literature on
big data issues in nuclear power plant systems, to assist in identi-
fying possible operation failures and anomaly detection.

2.1. Nuclear power plant and big data machine learning

Governments, research communities, and enterprises can all
make use of the overwhelming amounts of digital data which is
available, creating new opportunities and nurturing powerful
business intelligence for decision support [4]. Big data usage is very
common in industries like healthcare, agriculture, transportation,
and more. The massive amount of data is an issue not only for in-
dustry engineers but also for researchers in various fields. The need
to process a large scale of data for nuclear power plants has been
studied in the past [5e8]. For example, Lee, Jang and Moon et al. [9]
discussed the overall process for critical human error anticipation
through big survey data analysis applied in nuclear power plants
and concluded that big data analytics is possible and useful to
anticipate human errors. Liu, Seraoui, Vitelli and Zio et al. [10]
proposed an approach for prediction of the condition of nuclear
power plant components for condition monitoring. Ma and Jiang
et al. [11] performed pattern classification for fault diagnosis in
nuclear power plants using semi supervised classification. Kim, Na
and Heo et al. [12] presented condition-based maintenance with
monitoring, diagnosis and prognosis of thermal efficiency analysis
in nuclear power plants using big data techniques. Additionally,
Baraldi, Maio, Rigmonti, Zio and Seraoui et al. [13] highlighted
unsupervised fuzzy C-means clustering for fault diagnosis in nu-
clear turbine shut-down transients.

2.2. Nuclear power plant and machine learning anomaly detection

There have been several research studies implemented on nu-
clear power plants for anomaly detection [14e16]. C.K. Maurya and
D. Toshniwal et al. [17] performed experiments on real data coming
from a nuclear power plant to demonstrate the effectiveness of the
algorithm aswell as finding anomalies in the data set. K. Agarwal, D.
Toshniwal, P. K. Gupta, V. Khurana and P. Upadhyay et al. [18]
introduced a nearest-neighbor-based technique for performing
anomaly detection over time series data to predict needed main-
tenance in nuclear power plants. S. J. Schmugge et al. [19] proposed
improved anomaly detection by reducing fragmentation of seg-
mentation by iteratively linking possibly broken short lines and
minimizing false positive rates by filtering out areas to improve
classification.

The proposed predictive maintenance framework for nuclear
infrastructure using machine learning is different from existing
research efforts and can enable secured and efficient operations of
nuclear power plants, which is novel. The proposed nuclear power
plant predictive and defense maintenance system is generic and
can integrate various mechanisms to effectively conduct security
monitoring. Furthermore, the large storage and high computational
resources in the predictive analytics platform (PAP) can handle big
data processing and computation, which could further improve the
maintenance efficiency of nuclear power plants.

3. Research framework design

The proposed system is for predictive maintenance of nuclear
infrastructure with machine learning algorithms to capture and
analyze the heterogeneous data from the various sensors on the
nuclear power plant equipment. As shown in Fig. 1, the systemwill
import streaming data from temperature sensors, vibration sen-
sors, pressure sensors and accelerometers and other subsystems of
the nuclear power plant. The intelligent secret drivers, controller
and monitor will extract and transfer nuclear sensor data to an
intelligent listener. An intelligent listener collects and stores the
various nuclear data on a transmitter server to perform data
analytics.

3.1. Intelligent nuclear data acquisition

Intelligent nuclear data acquisition is the platform to extract,
load and store various types of nuclear data. In the proposed
research framework, we have proven the intelligent nuclear data
acquisition platform and intelligent listener component mathe-
matically. This intelligent nuclear data acquisition platform is the
collection of three different components: 1) intelligent drivers, 2)
controller, and 3) intelligent monitor.

3.1.1. Intelligent drivers
Intelligent drivers are used to perform data integration. The

purpose of intelligent drivers is to understand, extract, and validate
nuclear data. In this research effort, intelligent drivers have been
developed using various loaders which can load text, numeric data,
graphics, audio, video and images. Nuclear infrastructure systems
include a collection of various sensors and generates a variety of



Fig. 1. Predictive Maintenance Framework using Machine Learning.
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data. So, as a component of the intelligent nuclear data acquisition
platform, intelligent drivers play a very important role to support
the integration of this versatile data.

To optimize nuclear data acquisition, we employed a combina-
tion of extraction, loading, transformation, and validation of nu-
clear sensors data. First, the intelligent drivers shown in Fig. 1 are
calculated using the predicted phase-lag among the various sensors
as follows:

dðxÞ¼
Xn

S¼1

�
En þ Ln þ Tn þ Vndþ bn sin

npx
S

�
(1)

Here, d(x) is the value of a single-phase cycle using various
nuclear sensors at a time. Sigma shows the integration of extraction
E, loading L, transformation T, and validation V of all sensor data for
a different data cycle. This paralleled process is much faster and
supports various types of data extraction from different sensors.

3.1.2. Controllers
The controller is the manager of the intelligent nuclear data

acquisition platform. It manages the intelligent drivers and intel-
ligent monitor. The controller is controlling the multiple loaders
available in the intelligent drivers and also controls the overall
functionality and tasks of intelligent nuclear data acquisition.

3.1.3. Intelligent monitor
The intelligent monitor is used to monitor the nuclear data

extracted by the intelligent drivers. It also monitors and commu-
nicates with the intelligent listener, which collects and inserts data
into the database.

3.2. Representation learning

Representation learning is a component of the proposed
framework to store the nuclear data collected with the help of the
intelligent listener and machine learning algorithms to generate
useful results.

3.2.1. Intelligent listener
The intelligent listener's purpose is to sanitize and transfer the

nuclear data collected and sent by intelligent data acquisition. This
component of the representation learning platform has been
written to handle several concurrent connections by multiple nu-
clear sensors. The actual implementation of the intelligent listener
consists of a single daemon object which spawns an intelligent
listener for every nuclear sensor connection it detects.

The intelligent listener is a very important component of rep-
resentation learning. We have a single transmitter which is a non-
SQL server. So, we are required to maintain a transmitter queue
using the intelligent listener. In this paper, we propose the
following notation to represent the intelligent listener functions.

ILq ¼ p2

1� p
(2)

Here, the intelligent listener (IL) queue is one in which there is
one non-SQL server to store the data collected fromvarious sensors.
For scheduling, there are two different possibilities: 1) nuclear data
arrival time and 2) insertion time.

In equation (2), inter-arrival time and insertion time are expo-
nentially distributed whereas, in equation (3), inter-arrival time is
exponentially distributed and insertion time is generally
distributed.

ILq ¼ l2
s2
S þ p2

2ð1� pÞ (3)

Equations (2) and(3) are based on the Pollazcek-Khintichine
formula [20] discovered in 1930. There is a third inter-arrival and
insertion scenario of the intelligent listener. Both the inter-arrival
time and insertion time vary in distribution. Here, we cannot
have an exact result. So, the approximate result is calculated in
equation (4) which is based on Marchal in 1976 [21].

ILqz
p2

�
1þ K2

S

��
K2
a þ p2K2

S

�

2ð1� pÞ
�
1þ p2K2

S

� (4)

Please note that, if the mean value for arrival time is l and s2as
2
a

donates the variance of inter-arrival time, then:



Table 1
Confusion matrix with values.

Class Failed Prediction Non Failed Prediction

Engine Failed 871(TF) 125 (FP)
Engine Not Failed 774 (FN) 11326 (TN)

True Positive Rate ¼ True Positive/(True Positive þ True Negative).
False Positive Rate ¼ False Positive/(False Positive þ True Negative).
Precision ¼ True Positive/(True Positive þ False Positive).
Recall ¼ True Positive/(True Positive þ False Negative).
Accuracy ¼ True Positive þ True Negative/(True Positive þ True Negative þ False
Positive þ False Negative.
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K2
S ¼

s2a

ð1=lÞ2
(5)

In the same way, if m is the rate of insertion and s2as
2
a is the time

of insertion, then:

K2
S ¼

s2a

ð1=mÞ2
(6)

Thus, the intelligent listener is faster to collect and insert data
into the transmitter. It can collect multiple nuclear sensor data at a
time and store it into the non-SQL server named transmitter.

3.2.2. Transmitter
The transmitter server is another major component of the rep-

resentation learning platform. It is a non-SQL server to store het-
erogeneous nuclear data collected from the intelligent data
acquisition platform with the help of the intelligent listener.

3.2.3. Data analytics
The data analytics component performs machine learning. A

comparative study with better accuracy of different algorithms will
be used to predict nuclear power plant maintenance and failures.

Details for the machine learning algorithms for performing data
analytics are discussed in next section.

4. Machine learning implementation

The machine learning component reads the data from the
transmitter and applies machine learning algorithms to guide
preventive maintenance. This component provides feature selec-
tion and algorithm optimization, thereby improving the perfor-
mance and scalability of the proposed research. The experiments
are implemented in Python using scikit-learn [22]. The source code
will be available upon request. We have used support vector ma-
chine and logistic regression algorithms for the machine learning
implementation.

4.1. Support vector machine (SVM)

The support vector machine algorithm is a classification algo-
rithm that makes use of boundaries to make predictions. The al-
gorithm will attempt to find boundaries for certain features where
the classes can be separated and then use those boundaries for
predictions.

4.2. Logistic regression (LR)

LR is a linear model where the probabilities describing the
possible outcomes of a single trial are modeled via a logistic (logit)
function. The parameters of the model are estimated with
maximum likelihood estimation, using an iterative algorithm.

SVM algorithm used for classification problems similar to LR. LR
and SVM with linear Kernel generally perform comparably in
practice. The objective to choose SVM and LR is to perform
comparative study for both. Our observation is, SVM tries to
maximize the margin between the closest support vectors while LR
the posterior class probability. Thus, SVM find a solutionwhich is as
fare as possible for the two categories while LR has not this prop-
erty. In addition, LR is more sensitive to outliers than SVM because
the cost function of LR diverges faster than those of SVM.

The performance of the models developed with these algo-
rithms can be measured by computing the difference between the
predicted class for a given input versus the actual class of the input.
For example, the correct classification will predict data as benign if
the input data was benign. To quantify the detection performance
of the classifier, the 2 � 2 confusion matrix is used (shown in
Table 1) as it provides all the possible outcomes of a prediction and
has the forms True Positive, True Negative, False Positive, and False
Negative of the classifier.

5. Algorithm implementation, results and evaluation

Presently, we don't have appropriate nuclear power plant real
time data. We are still collecting nuclear data using Lidar sensors to
perform predictive maintenance. It was also necessary to check our
proposed predictive maintenance framework and its accuracy. So, to
implement and verify the optimized advanced data analytics, we
haveuseda turbofanenginedegradation simulationdata set [23]. The
National Aeronautics and SpaceAdministration (NASA) carried out an
engine degradation simulation using C-MAPSS. After successful
implementation of the data analytics component of the proposed
framework in turbofan engine data, we are going to experimentwith
the same framework for commercial nuclear power plants.

5.1. Feature selections

The feature analysis and selection involves identifying the fea-
tures that have maximum influence on the label to perform pre-
diction. The features with the most influence on the label are
selected for machine learning implementation. Low quality and
unrelated features can make it harder for algorithms to converge
and need to be removed using technique variance and correlation.
This method was designed by Francis Anscombe, who illustrated
distinct datasets with the same mean, variance and correlation to
emphasize important feature selection.

5.2. Results

The following figures show the results of a predictive mainte-
nance framework for nuclear infrastructure using machine
learning. In the proposed framework, logistic regression and sup-
port vector machine has been used.

Using logistic regression and SVM, we were able to answer two
questions about the state of an engine. First, we wanted to know
what the chances were of an engine failing in the next n cycles,
where one (1) hour is equal to one (1) cycle. This became a classi-
fication problem; we applied labels to a set of training data. For
each cycle of an engine, if the engine did not fail within the next n
cycles, we assigned a negative label. If it did fail within the next n
cycles, we assigned a positive label. The training and testing sets
were split by selecting a random sample of the engine numbers.

The second question was related to scoring. At each cycle, we
wanted to know how likely it was that an engine was about to fail.
Similarly, the training and testing sets were split by sampling the
engine numbers.



Fig. 2. Predicting nuclear power plant failures in next N days using logistic regression.
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5.3. Prediction

For the first question, a logistic regression algorithm was
implemented. Given the condition of the sensors, we made a pre-
diction on whether the engine will survive the next n cycles. The
number of cycles was varied; with a lower number of cycles, the
model did not have to learn a large range of sensor values that exist
in one class, making predictions relatively easy. As the number of
cycles increased, the data was not so easily separable.

For the scoring question, each cycle was scored using the SVM
model. A lower score would indicate that an engine was in a
healthier state, a higher score would indicate an engine was about
to fail.

In Fig. 2, accuracy on the Yaxis presents the power plants failure
predictions with respect to the number of cycle on the X axis.

Fig. 3 shows the prediction of engine failures in n cycles using
logistic regression. The X axis shows the life of engines in cycles and
the Y axis shows the probability of failure for 30 cycles, 70 cycles
Fig. 3. Predicting engine failures in N cycles for engine 17 using logistic regression.

Fig. 4. Confusion matrix using Svm & Lr.

Fig. 5. Likelihood of Degradation score of specific engine using support vector
machine.



Table 2
Comparison of results with other existing nuclear power plants preventive maintenance using machine learning.

Existing Work Feature Types Machine Learning Algorithms Accuracy

[24] PCA Linear 80%
[25] RFE LR,RF,MLP 67e75%
[26] Multiple SVN,ANN Vary
[27] Timely ANN,LSTM Vary
Proposed Work No Variance & Co-related SVM, LR 95%

Table 3
Proposed work functionality comparison with existing work.

Functionality [24] [26] [27] Proposed Work

Hidden anomaly of nuclear infrastructure engines ✓ 7 ✓ ✓

Schedule Synchronization ✓ ✓ 7 ✓

Different level of plants monitoring 7 7 7 ✓

Automated prediction 7 ✓ 7 ✓

Machine learning approaches 7 7 ✓ ✓

Heterogeneous Data 7 7 7 ✓
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and 120 cycles. Fig. 4 shows the SVM plot of engine failure with the
number of cycles for Engine 17. The X axis shows the number of
cycles of engine operation and the Y axis shows the SVM score for
prediction of engine failure. This plot shows that if the life of an
engine increases in cycles, the SVMmodel has scored a high degree
of failure for the increased life of the engine cycles.

In the proposed research, we have also observed a number of
cycles of specific plant components which require maintenance or
have a likelihood to fail. Fig. 5 shows failure prediction of specific
engine 17 from Turbofan Engine Simulation Dataset. It shows the
pattern of degradation by generating score using SVM.

5.4. Evaluation of proposed research

A comparison was undertaken to highlight the significance of
our proposed research work. We have compared our work with
existing work and found our proposed framework has a higher
accuracy. We have performed the comparison in two different
ways.

Table 2 presents a comparison of results with existing research
performed by other researchers on nuclear power plants to
perform prediction of maintenance. It explains varying feature
types and selection techniques with different machine learning
algorithms. As represented in the confusion matrix and Figs. 1, 2
and 4, the accuracy of the proposed work is higher than the liter-
ature we referenced.

Table 3 presents the various functionalities included in the
proposed work and a comparison with existing work. As described,
our proposed work includes hidden anomaly identification for
nuclear infrastructure specific engine, scheduling synchronization
among all nuclear plant sensors, different level of plants moni-
toring and automated prediction. The robust framework we
designed is faster to perform predictive maintenance of nuclear
infrastructure.

5.5. Applications, conclusion and future work

The proposed predictive maintenance framework can be
applied in many applications other than nuclear infrastructure. As
per state of art technologies, it can be applied in IoT equipment
maintenance, The ARC group study states [28], however, that
worldwide, only 18% of equipment has failed due to its age, while
82% of failures occur randomly. In this case, proposed framework is
very much useful. The other potential applications of proposed
predictive maintenance framework are listed below [29]:

� Identifying motor amperage spikes or overheating from bad
bearings or insulation breakdowns

� Finding three-phase power imbalances from harmonic distor-
tion, overloads, or degradation or failure of one or more phases

� Locating potential overloads in electrical panels
� Measuring supply side and demand side power at a common
coupling point to monitor power consumption

� Capturing increased temperatures within electrical panels to
prevent component failures

Detecting a drop-in temperature in a steam pipeline that could
indicate a pressure leak.

In this research, we have presented the design and development
of a predictive maintenance framework for nuclear infrastructure
using machine learning techniques. The framework is able to pre-
dict the failure of nuclear plant infrastructure and engines and is
also capable of classifying the number of cycles. Furthermore, it
provides higher accuracy with no performance overhead. In the
future, we would like to extract real-time nuclear power plant data
using the proposed intelligent data acquisition system and perform
similar experiments with the added scope. We are also looking into
additional machine learning algorithms to increase options and
improve accuracy.
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