• Title/Summary/Keyword: perfect module

Search Result 44, Processing Time 0.023 seconds

ON A QUASI-POWER MODULE

  • PARK CHIN HONG;SHIM HONG TAE
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.679-687
    • /
    • 2005
  • In this paper we shall give a new definition for a quasi-power module P(M) and discuss some properties for P(M). The quasi-power module P(M) is a direct sum of invertible quasi-submodules C(H)'s of P(M) and then the quasi-submodule C(H) is also a direct sum of strongly cyclic quasi-submodules of C(H). When M is a quasi-perfect right R-module, we shall see that the quasi-power module P(M) is invertible.

ON STRONGLY CONNECTED MODULES WITH PERFECT

  • PARK CHIN HONG;LEE JEONG KEUN;SHIM HONG TAE
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.653-662
    • /
    • 2005
  • In this paper we shall give the relationships among $T_R,\;End_{R}(M),\;SEnd_{R}(M)\;and\;SAut_R(M)$ when M is a perfect R-module. If M and N are perfect modules, we get $SAut_{R}(M {\times}N){\cong}SAut_{R}(M){\times}SAut_R(N)$. Also we shall discuss that $_x(M)_H$ is a subgroup of $_x(M)$ if M is quasi-perfect and $_x(M)_H$ is a normal subgroup of $_x(M)$ if M is perfect.

Finitely Generated Modules over Semilocal Rings and Characterizations of (Semi-)Perfect Rings

  • Chang, Chae-Hoon
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.143-154
    • /
    • 2008
  • Lomp [9] has studied finitely generated projective modules over semilocal rings. He obtained the following: finitely generated projective modules over semilocal rings are semilocal. We shall give necessary and sufficient conditions for finitely generated modules to be semilocal modules. By using a lifting property, we also give characterizations of right perfect (semiperfect) rings. Our main results can be summarized as follows: (1) Let M be a finitely generated module. Then M has finite hollow dimension if and only if M is weakly supplemented if and only if M is semilocal. (2) A ring R is right perfect if and only if every flat right R-module is lifting and every right R-module has a flat cover if and only if every quasi-projective right R-module is lifting. (3) A ring R is semiperfect if and only if every finitely generated flat right R-module is lifting if and only if RR satisfies the lifting property for simple factor modules.

RAD-SUPPLEMENTING MODULES

  • Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.403-414
    • /
    • 2016
  • Let R be a ring, and let M be a left R-module. If M is Rad-supplementing, then every direct summand of M is Rad-supplementing, but not each factor module of M. Any finite direct sum of Rad-supplementing modules is Rad-supplementing. Every module with composition series is (Rad-)supplementing. M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension. R is left perfect if and only if R is semilocal, reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is Rad-supplementing if and only if R is reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is ample Rad-supplementing. M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing. Every left R-module is (ample) Rad-supplementing if and only if R/P(R) is left perfect, where P(R) is the sum of all left ideals I of R such that Rad I = I.

X-LIFTING MODULES OVER RIGHT PERFECT RINGS

  • Chang, Chae-Hoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.59-66
    • /
    • 2008
  • Keskin and Harmanci defined the family B(M,X) = ${A{\leq}M|{\exists}Y{\leq}X,{\exists}f{\in}Hom_R(M,X/Y),\;Ker\;f/A{\ll}M/A}$. And Orhan and Keskin generalized projective modules via the class B(M, X). In this note we introduce X-local summands and X-hollow modules via the class B(M, X). Let R be a right perfect ring and let M be an X-lifting module. We prove that if every co-closed submodule of any projective module P contains Rad(P), then M has an indecomposable decomposition. This result is a generalization of Kuratomi and Chang's result [9, Theorem 3.4]. Let X be an R-module. We also prove that for an X-hollow module H such that every non-zero direct summand K of H with $K{\in}B$(H, X), if $H{\oplus}H$ has the internal exchange property, then H has a local endomorphism ring.

ON THE CHARACTERISTIC RING-MODULES

  • Park, Chin-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.145-152
    • /
    • 1995
  • From now on, we assume that a ring R has an identity 1. We have the following Lemma from Park[2].

  • PDF

ON A GENERALIZATION OF ⊕-SUPPLEMENTED MODULES

  • Turkmen, Burcu Nisanci;Davvaz, Bijan
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.531-538
    • /
    • 2019
  • We introduce FI-${\oplus}$-supplemented modules as a proper generalization of ${\oplus}$-supplemented modules. We prove that; (1) every finite direct sum of FI-${\oplus}$-supplemented R-modules is an FI-${\oplus}$-supplemented R-module for any ring R ; (2) if every left R-module is FI-${\oplus}$-supplemented over a semilocal ring R, then R is left perfect; (3) if M is a finitely generated torsion-free uniform R-module over a commutative integrally closed domain such that every direct summand of M is FI-${\oplus}$-supplemented, then M is a direct sum of cyclic modules.

RINGS WITH VARIATIONS OF FLAT COVERS

  • Demirci, Yilmaz Mehmet;Turkmen, Ergul
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.799-812
    • /
    • 2019
  • We introduce flat e-covers of modules and define e-perfect rings as a generalization of perfect rings. We prove that a ring is right perfect if and only if it is semilocal and right e-perfect which generalizes a result due to N. Ding and J. Chen. Moreover, in the light of the fact that a ring R is right perfect if and only if flat covers of any R-module are projective covers, we study on the rings over which flat covers of modules are (generalized) locally projective covers, and obtain some characterizations of (semi) perfect, A-perfect and B-perfect rings.

MODULES THAT SUBMODULES LIE OVER A SUMMAND

  • Min, Kang-Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.569-575
    • /
    • 2007
  • Let M be a nonzero module. M has the property that every submodule of M lies over a direct summand of M. We study some properties of such a module. The endomorphism ring of such a module is also studied. The relationships of such a module to the semi-regular modules, and to the semi-perfect modules are described.

  • PDF

ON A CLASS OF PERFECT RINGS

  • Olgun, Arzu;Turkmen, Ergul
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.591-600
    • /
    • 2020
  • A module M is called ss-semilocal if every submodule U of M has a weak supplement V in M such that U∩V is semisimple. In this paper, we provide the basic properties of ss-semilocal modules. In particular, it is proved that, for a ring R, RR is ss-semilocal if and only if every left R-module is ss-semilocal if and only if R is semilocal and Rad(R) ⊆ Soc(RR). We define projective ss-covers and prove the rings with the property that every (simple) module has a projective ss-cover are ss-semilocal.