• Title/Summary/Keyword: peptide screening

Search Result 97, Processing Time 0.038 seconds

Screening of New Antibiotics Inhibiting Bacterial Peptide Deformylase (PDF) (세균의 Peptide Deformylase(PDF)를 억제하는 새로운 항균물질의 스크리닝)

  • 곽진환;김현주;설민정;서병선;이종국;최수영
    • YAKHAK HOEJI
    • /
    • v.47 no.3
    • /
    • pp.184-189
    • /
    • 2003
  • Peptide deformylase (PDF) is essential and unique to bacteria, thus making it an attractive target for the discovery of novel antibacterial drugs. PDF deformylates the N-formylmethionine of newly synthesized polypeptides in prokaryotes. In this study, a pdf gene from Staphylococcus aureus 6538p was cloned in pET-14b vector and PDF protein was over-produced in Escherichia coli BL21 (DE3). NH$_2$-terminal His-tagged PDF protein was purified by nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity chromatography. Enzymatic activity of purified 6xHis-tagged PDF was tested on the substrate (formyl-Methionine-Alanine-Serine) by formate dehydrogenase-coupled spectrometric assay of peptide deformylase. For the discovery of new PDF inhibitors from chemical libraries and culture broths of soil bacteria, a target-oriented screening system using a 96-well plate was developed. About 3,000 commercial chemical libraries were tested in this screening system, and 2 chemicals (0.07%) among them showed an inhibitory activity against PDF enzyme. This result showed that a new screening system can be used for the discovery of new PDF inhibitors.

Combinatorial Solid Phase Peptide Synthesis and Bioassays

  • Shin, Dong-Sik;Kim, Do-Hyun;Chung, Woo-Jae;Lee, Yoon-Sik
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.517-525
    • /
    • 2005
  • Solid phase peptide synthesis method, which was introduced by Merrifield in 1963, has spawned the concept of combinatorial chemistry. In this review, we summarize the present technologies of solid phase peptide synthesis (SPPS) that are related to combinatorial chemistry. The conventional methods of peptide library synthesis on polymer support are parallel synthesis, split and mix synthesis and reagent mixture synthesis. Combining surface chemistry with the recent technology of microelectronic semiconductor fabrication system, the peptide microarray synthesis methods on a planar solid support are developed, which leads to spatially addressable peptide library. There are two kinds of peptide microarray synthesis methodologies: pre-synthesized peptide immobilization onto a glass or membrane substrate and in situ peptide synthesis by a photolithography or the SPOT method. This review also discusses the application of peptide libraries for high-throughput bioassays, for example, peptide ligand screening for antibody or cell signaling, enzyme substrate and inhibitor screening as well as other applications.

Screening of Peptide Sequences with Affinity to Bisphenol A by Biopanning (바이오패닝에 의한 Bisphenol A 친화성 펩타이드 서열의 탐색)

  • Yoo, Ik-Keun;Choe, Woo-Seok
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.211-214
    • /
    • 2013
  • Bisphenol A (BPA) is a highly hazardous component to human since it is regarded as one of endocrine disruptors. For the analysis and/or removal of BPA, the searching for the specific ligand with a selective affinity to target BPA is required. In order to find the peptide moiety that specifically binds to BPA, the ultrasound-assisted biopanning was carried out with a phage-displayed peptide library expressing constrained heptamer. After six rounds of positive screening against BPA particles followed by the negative screening against the surface of eppendorf tube, the peptide sequence (CysLysSerLeuGluAsnSerTyrCys) with affinity to BPA was screened based on the order of frequency from the screened phage clones. To further verify the specificity of screened peptide sequence, the cross-binding affinity of the phage peptide toward BPA analogues such as Bisphenol S (BPS) and Bisphenol F (BPF) was also assessed, where the selected phage peptide showed a higher affinity to BPA over BPS and BPF.

Screening of Peptide Sequences Cognitive of Pb2+ by Biopanning (바이오패닝에 의한 Pb2+ 친화성 펩타이드 서열의 탐색)

  • Nguyen, Thuong T.L.;Hong, Soon Ho;Choe, Woo-Seok;Yoo, Ik-Keun
    • KSBB Journal
    • /
    • v.28 no.3
    • /
    • pp.185-190
    • /
    • 2013
  • For the selection of peptide specifically binding to $Pb^{2+}$, the biopanning with the commercially available Ph.D.-7 phage displayed heptapeptide library was carried out against $Pb^{2+}$ immobilized on a metal-chelating IDA (iminodiacetic acid) resin. After four rounds of screening against $Pb^{2+}$-IDA including negative selections against charged bead with metal ions other than $Pb^{2+}$ and uncharged bead, several candidate lead-binding phage peptides were initially determined based on the order of frequency from the screened phage clones. Of the selected phage peptide sequences, the peptide of the highest frequency, CysSerIleArgThrLeuHisGlnCys (CSIRTLHQC) also exhibited the strongest affinity for $Pb^{2+}$ in binding assays for individual phage clones. However, there was not a significant difference in $Pb^{2+}$ affinity between selected peptides when using synthetic heptapeptides corresponding to the displayed peptide sequences of phage clones.

Selection of Skin-Penetrating Peptide Using Phage Display (파지 디스플레이를 이용한 피부 투과 기능성 펩타이드의 개발)

  • Lee, Seol-Hoon;Kang, Nae Gyu;Lee, Sanghwa
    • YAKHAK HOEJI
    • /
    • v.57 no.2
    • /
    • pp.125-131
    • /
    • 2013
  • Biologically active peptides, including growth factors and cytokines, participate in various biological processes in human skin. They could provide a great advantage of maintaining healthy skin. Many peptide growth factors like epidermal growth factor (EGF) and human growth hormone (hGH) have been used in cosmetic formulations. The delivery of peptide growth factors across the Stratum corneum, however, seems not sufficient because of their physical properties such as high molecular weight and hydrophilicity. So increasing the penetration of growth factors of interest into skin would be a major concern for ensuring their maximum biological efficacy. In this study, we have identified several skin penetration-enhancing peptides which facilitate delivery of growth factors, when fused at N-terminus of the target protein, into skin. For efficient and rapid screening, we constructed a skin-penetrating assay system using Franz cell and porcine skin. Next, we carried out phage display screening using M-13 bacteriophage with random 12 -amino acid library on its coat protein P3 on that system. After several selection rounds, peptide sequences facilitate the penetration of phages through the porcine skin were identified from a large population of phages. We found that phages with the most potent peptide (S3-2, NGSLNTHLAPIL) could penetrate the porcine skin eight times more than those with control peptide (12 mino acids scrambled peptide). Furthermore, growth factors conjugated with S3-2 peptide penetrate porcine skin three to five times efficiently than non-conjugated growth factors. In conclusion, our data shows that the skin penetration-enhancing peptide we have characterized could increase the delivery of growth factors and is useful for cosmeceutical application.

Screening Peptides Binding Specifically to Colorectal Cancer Cells from a Phage Random Peptide Library

  • Wang, Jun-Jiang;Liu, Ying;Zheng, Yang;Liao, Kang-Xiong;Lin, Feng;Wu, Cheng-Tang;Cai, Guan-Fu;Yao, Xue-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.377-381
    • /
    • 2012
  • The aim of this study was to screen for polypeptides binding specifically to LoVo human colorectal cancer cells using a phage-displayed peptide library as a targeting vector for colorectal cancer therapy. Human normal colorectal mucous epithelial cells were applied as absorber cells for subtraction biopanning with a c7c phage display peptide library. Positive phage clones were identified by enzyme-linked immunosorbent assay and immunofluorescence detection; amino acid sequences were deduced by DNA sequencing. After 3 rounds of screening, 5 of 20 phage clones screened positive, showing specific binding to LoVo cells and a conserved RPM motif. Specific peptides against colorectal cancer cells could be obtained from a phage display peptide library and may be used as potential vectors for targeting therapy for colorectal cancer.

Screening of Skin-permeable Peptide in Thermal Stabilizing Formulation Using Phage Display (파지디스플레이를 이용한 성장인자 안정화 제형 맞춤형 피부 투과 펩타이드의 개발)

  • Lee, Seol-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.326-333
    • /
    • 2018
  • In this study, we identified methods to improve heat stability and skin permeability of functional protein biopolymers, such as growth factors, enzymes, and peptides. The biopolymers participate in cellular activation and catalytic functions in vivo. Therefore, when applied to cosmetics, their efficacies are expected to be helpful for skin care. However, they have disadvantages that include instability to heat and low skin permeability due to their high molecular weight. To overcome these problems, we searched for a composition that increases heat stability. Stability was improved using a polymeric humectant having a long polyethylene glycol length, compared with a mono-molecular structure humectant. Next, to enhance skin permeation, a permeation enhancing peptide was selected from a phage library. The permeation enhancing peptide can be commonly used to promote the permeation of growth factors, enzymes, and peptides. Screening was performed on the polymeric humectant formulation. One dominant peptide from the modified-screening method was identified. Furthermore, it was confirmed that the permeability of the peptide was better than that of the peptide developed through a screening system based on phosphate-buffered saline. The data indicate that the polymeric humectant formulation will be helpful for increasing the heat stability of protein ingredients and that skin permeability could be increased by a formulation-specific, penetration-enhancing peptide.

Surface Modification of Glass Chip for Peptide Microarray (펩타이드 Microarray를 위한 유리 칩의 표면 개질)

  • Cho, Hyung-Min;Lim, Chang-Hwan;Neff, Silke;Jungbauer, Alois;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.260-264
    • /
    • 2007
  • Peptides are frequently studied as candidates for new drug development. Recently, synthesized peptide library is screened for a certain functionality on a microarray biochip format. In this study, in order to replace the conventional cellulose membrane with glass for a microarray chip substrate for peptide library screening, we modified the glass surface from amines to thiols and covalently immobilized the peptides. Using trypsin-FITC (fluorescein isothiocyanate) conjugate that could specifically bind to a trypsin binding domain consisting of a 7-amino acid peptide, we checked the degree of surface modification. Because of the relatively lower hydrophilicity and reduced surface roughness, the conjugation reaction to the glass required a longer reaction time and a higher temperature. It took approximately 12 hr for the reaction to be completed. From the fluorescence signal intensity, we could differentiate between the target and the control peptides. This difference was confirmed by a separate experiment using QCM. Furthermore, a smaller volume and higher concentration of a spot showed a higher fluorescence intensity. These data would provide the basic conditions for the development of microarray peptide biochips.

Screening and Purification of a Novel Antibacterial Peptide, cgCAFLP, Against Skin Pathogens from the Extract of the Pacific Oyster Crassostrea gigas from Buan in Korea (부안산 참굴(Crassostrea gigas) 추출물로부터 피부 상재균에 대한 새로운 항균 펩타이드, cgCAFLP의 탐색 및 정제)

  • Lee, Ji-Eun;Seo, Jung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.6
    • /
    • pp.927-937
    • /
    • 2021
  • This study was performed to screen the antimicrobial activities of the extract from the Pacific oyster Crassostrea gigas against skin pathogens and to purify the relevant antibacterial peptide. The acidified extract showed potent antibacterial activities against gram-positive and gram-negative bacteria but showed no activity against Candida albicans and no significant cell toxicity. Among acne-causing pathogens, the acidified extract showed potent antibacterial activity only against Staphylococcus aureus, and its antibacterial activity was completely abolished by treatment with trypsin or chymotrypsin, and was inhibited by salt treatment. The acidified extract showed strong DNA-binding ability but did not show bacterial membrane permeabilizing ability. Based on antimicrobial activity screening and cytotoxic effects, a novel antibacterial peptide was purified from the acidified gill extract using solid-phase extraction, cation-exchange, and reversed-phase HPLC. The resulting peptide had a molecular weight of 4800.8 Da and showed partial sequence homology with the carbonic anhydrase 4 (CA4) protein in the hard-shelled mussel. Overall, we purified a novel antibacterial peptide, named cgCAFLP, which is related to carbonic anhydrase 4 (CA4) protein, against skin pathogens. Our results suggest that the Pacific oyster extract could be used as an additive to control some acne-related skin pathogens (S. aureus).

A Screening Method for Src Homology 3 Domain Binding Blockers Based on Ras Signaling Pathway

  • Ko, Woo-Suk;Yoon, Sun-Young;Kim, Jae-Won;Lee, Choong-Eun;Han, Mi-Young
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.303-307
    • /
    • 1997
  • Grb2, which is composed of a Src homology 2 (SH2) domain and two Src homology 3 (SH3) domains, is known to serve as an adaptor protein in signaling for Ras activation. Thus, a blocker of the Grb2 interactions with other proteins can be a potential candidate for an anticancer drug. In this study, we have developed a high throughput screening method for SH3 domain binding ligands and blockers. Firstly, we made and purified the glutathione S-transferase (GST)-fusion proteins with the Grb2 SH2 and SH3 domains, and the entire Grb2. This method measures the binding of a biotin-labeled oligopeptide, derived from a Grb2/SH3 binding motif in the hSos, to the GST-fusion proteins, which are precoated as glutathione S-transferase fusion protein on a solid phase. When $1\;{\mu}g$ of each fusion protein was used to coat the wells, both N- and C- terminal SH3 the domains as well as the whole of Grb2 were able to interact with the biotin-conjugated ligand peptide, while the SH2 domain and GST alone showed no binding affinity. Although N- and C- terminal SH3 domains showed an increase of binding to the ligand peptide in proportion to the amount of peptide, the GST fusion protein with Grb2 demonstrated much higher binding affinity. GST-Grb2 coating on the solid phase showed a saturation curve; 66 and 84% of the maximal binding was observed at 100 and 300 ng/$100\;{\mu}l$, respectively. This binding assay system was peptide sequence-specific, showing a dose-dependent inhibition with the unlabeled peptide of SH3 binding motif. Several other peptides, such as SH2 domain binding motifs and PTB domain binding motif, were ineffective to inhibit the binding to the biotin-conjugated ligand peptide. These results suggest that our method may be useful to screen for new anticancer drug candidates which can block the signaling pathways mediated by SH3 domain binding.

  • PDF