DOI QR코드

DOI QR Code

Screening of Peptide Sequences with Affinity to Bisphenol A by Biopanning

바이오패닝에 의한 Bisphenol A 친화성 펩타이드 서열의 탐색

  • Yoo, Ik-Keun (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Choe, Woo-Seok (School of Chemical Engineering, Sungkyunkwan University)
  • 유익근 (울산대학교 공과대학 화학공학부) ;
  • 최우석 (성균관대학교 공과대학 화학공학부)
  • Received : 2013.06.07
  • Accepted : 2013.06.24
  • Published : 2013.06.30

Abstract

Bisphenol A (BPA) is a highly hazardous component to human since it is regarded as one of endocrine disruptors. For the analysis and/or removal of BPA, the searching for the specific ligand with a selective affinity to target BPA is required. In order to find the peptide moiety that specifically binds to BPA, the ultrasound-assisted biopanning was carried out with a phage-displayed peptide library expressing constrained heptamer. After six rounds of positive screening against BPA particles followed by the negative screening against the surface of eppendorf tube, the peptide sequence (CysLysSerLeuGluAsnSerTyrCys) with affinity to BPA was screened based on the order of frequency from the screened phage clones. To further verify the specificity of screened peptide sequence, the cross-binding affinity of the phage peptide toward BPA analogues such as Bisphenol S (BPS) and Bisphenol F (BPF) was also assessed, where the selected phage peptide showed a higher affinity to BPA over BPS and BPF.

비스페놀 A (BPA)는 내분비계 장애물질의 하나로서 인간에게 큰 위협이 되고 있는 물질이다. 따라서 BPA의 분석 및 제거를 위해 BPA에 대해 선택적 친화성을 보이는 특정 리간드 탐색이 요구되고 있다. 본 연구에서는 초음파 처리를 동반한 바이오패닝 기법을 이용하여 파지 표면 디스플레이 라이브러리로부터 BPA에 친화성이 높은 펩타이드 서열을 탐색하였다. BPA 입자에 대한 6라운드의 positive 스크리닝과 에펜도르프 튜브 표면 재질에 대한 negative 스크리닝 과정을 실시하였고, 이를 통해 BPA에 선택적 친화성이 높은 CysLysSerLeuGluAsnSerTyrCys (CKSLENSYC) 서열을 스크리닝하였다. 또한 확보된 서열의 선택적 친화성을 검증하기 위해 BPA와 구조가 유사한 비스페놀 F (BPF), 비스페놀 S (BPS)에 대해서 교차 친화성이 있는지 평가하였고, 앞에서 선택된 서열이 BPS, BPF에 비하여 상대적으로 BPA에 대한 친화성이 높다는 것을 확인하였다.

Keywords

References

  1. Goodson, A., Robin, H., Summerfield, W., and Cooper, I. 2004. Migration of bisphenol A from can coating-effects of damage, storage conditions and heating. Food Addit. Contam. 21, 1015-1026. https://doi.org/10.1080/02652030400011387
  2. Kotrba, P., Doleckova, L., de Lorenzo, V., and Ruml, T. 1999. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl. Environ. Microbiol. 65, 1092-1098.
  3. Marrazza, G., Chianella, I., and Mascini, M. 1999. Disposable DNA electrochemical biosensors for environmental monitoring. Anal. Chim. Acta 387, 297-307. https://doi.org/10.1016/S0003-2670(99)00051-3
  4. Mejare, M., Ljung, S., and Bulow, L. 1998. Selection of cadmium specific hexapeptides and their expression as OmpA fusion proteins in Escherichia coli. Protein Eng. 11, 489-494. https://doi.org/10.1093/protein/11.6.489
  5. Nguyen, T.L.T., Lee, H.R., Hong, S.H., Jang, J.R., Choe, W.S., and Yoo, I.K. 2013. Selective lead adsorption by recombinant Escherichia coli displaying a lead-binding peptide. Appl. Biochem. Biotechnol. 169, 1188-1196. https://doi.org/10.1007/s12010-012-0073-2
  6. Nian, R., Kim, D.S., Nguyen, T., Tan, L., Kim, C.W., Yoo, I.K., and Choe, W.S. 2010. Chromatographic biopanning for the selection of peptides with high specificity to $Pb^{2+}$ from phage displayed peptide library. J. Chromatogr. A 1217, 5940-5949. https://doi.org/10.1016/j.chroma.2010.07.048
  7. Parellada, J., Narvaez, A., Lopez, M.A., Domıinguez, E., Fernandez, J.J., Pavlov, V., and Katakis, I. 1998. Amperometric immunosensors and enzyme electrodes for environmental applications. Anal. Chim. Acta 362, 47-57. https://doi.org/10.1016/S0003-2670(98)00087-7
  8. Ravikumar, S., Ganesh, R., Yoo, I.K., and Hong, S.H. 2012. Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochem. 47, 758-765. https://doi.org/10.1016/j.procbio.2012.02.007
  9. Ravikumar, S., Yoo, I.K., Lee, S.Y., and Hong, S.H. 2011. Construction of copper removing bacteria through the integration of two-component system and cell surface display. Appl. Biochem. Biotechnol. 165, 1674-1681. https://doi.org/10.1007/s12010-011-9386-9
  10. Rodriguez-Mozaz, S., Marco, M.P., Lopez de Alda, M.J., and Barcelo, D. 2004. Biosensors for environmental monitoring of endocrine disruptors: a review article. Anal. Bioanal. Chem. 378, 588-598. https://doi.org/10.1007/s00216-003-2385-0
  11. Rose, A., Nistor, C., Emnéus, J., Pfeiffer, D., and Wollenberger, U. 2002. GDH biosensor based off-line capillary immunoassay for alkylphenols and their ethoxylates. Biosens. Bioelectron. 17, 1033-1043. https://doi.org/10.1016/S0956-5663(02)00096-9
  12. Staples, C.A., Dorn, P.B., Klecka, G.M., O'Block, S.T., and Hariis, L.R. 1998. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36, 2149-2173. https://doi.org/10.1016/S0045-6535(97)10133-3
  13. Stuart, J.D., Capulong, C.P., Launer, K.D., and Pan, X. 2005. Analyses of phenolic endocrine disrupting chemicals in marine samples by both gas and liquid chromatography-mass spectrometry. J. Chromatogr. A 1079, 136-145. https://doi.org/10.1016/j.chroma.2005.03.075
  14. Védrine, C., Leclerc, J.-C., Durrieu, C., and Tran-Minh, C. 2003. Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens. Bioelectron. 18, 457-463. https://doi.org/10.1016/S0956-5663(02)00157-4
  15. Vijayaraghavan, K. and Yun, Y.S. 2008. Bacterial biosorbents and biosroption. Biotechnol. Adv. 26, 266-291. https://doi.org/10.1016/j.biotechadv.2008.02.002

Cited by

  1. Development of bisphenol A-removing recombinant Escherichia coli by monomeric and dimeric surface display of bisphenol A-binding peptide 2017, https://doi.org/10.1007/s00449-017-1882-z